基于油循环与分子交换的变压器油浸气体脱气装置及方法制造方法及图纸

技术编号:8855520 阅读:192 留言:0更新日期:2013-06-26 19:48
本发明专利技术公开了一种基于油循环与分子交换的变压器油浸气体脱气装置及方法。该装置采用实验室绝缘油振荡法脱气法中的注入氮气进行分子交换的原理,并采用油循环喷洒的方式取代振荡方式,以提高系统的稳定性与可靠性。这种脱气方式完全模拟实验室脱气方式,因此,只要保证气体分析方法正确,那么分析结果将与电科院实验室的分析结果基本相同,变压器运行状态评判结果也将与电科院实验室评判结果一致,这有助于提高基于气体分析的变压器运行状态在线监测的准确性。

【技术实现步骤摘要】

本专利技术涉及分子科学领域、电气设备状态监测领域,涉及一种从油中脱气的装置,特别涉及一种。
技术介绍
变压器是电力系统中最为重要的设备之一,其运行状况直接关系到整个电网能否安全运行。近年来,国家电网投入新建变电站每年以7% 10%速度递增,但每年对设备的定期维护都会造成资源浪费,同时,频繁的检修会还带来不必要的停机,为设备埋下新的故障隐患。为了避免这种现象的出现,变压器已经从“定期维护”向“状态检修”过渡,为变电站的“无人值守”创造了条件。因此,及时掌握变压器的运行状况,防止重大事故的发生,对整个电网系统的安全运行具有重要的工程价值。目前,变压器的运行状态在线监测主要采用变压器油浸气体的在线分析来实现,即在线分析变压器绝缘油中各组分气体的含量,并根据这些气体与变压器故障的关联性来诊断变压器的运行状态。这些气体主要包括甲烷、乙烷、乙烯、乙炔、一氧化碳、二氧化碳和氢气。由于溶解在油中的气体不能直接分析,需要从绝缘油中脱离出来才能用气相色谱仪、光谱仪等仪器进行分析。因此,变压器的运行状态在线监测系统中必须有将气体从绝缘油中脱离出来的脱气器。目前,常用的脱气器有真空脱气器、分子筛脱气器、超声脱气器、振荡脱气器等。振荡脱气器主要用于实验室,这种脱气器首先在提取的油样品中注入氮气,然后将其放置在振荡箱中振荡20分钟左右,使得油中的气体与氮气进行充分的气体交换,再将其中的气体取出来进行气体分析。变压器运行状态的最终“确诊”就是采用这种方法来进行的;真空脱气器是变压器运行状态在线监测中常用的一种脱气器,但由于不同组分气体在不同温度、不同真空度时的脱气率是不一样的,这导致气体分析结果与变压器运行状态的关联性与实验室研究得到的关联性并不一致,这也是目前变压器运行状态在线监测结果准确性不够高的原因之一。分子筛脱气器是近年来才开始投入使用的一种脱气器,这种脱气器脱气时间长,单次脱气时间可长达一天,而且不同组分气体的脱气时间还不一样,这将进一步增加诊断的偏差。而且,分子筛易受污染,长时间工作后,其性能可能得不到保证;超声脱气器利用气体分子活动力强的特性,通过超声波能量的激发,从而从油中“挣脱”出来,这种脱气器容易使得C3和C4等本来不易脱离的气体从油中脱离出来,从而给气体的分析带来困难。目前还没有真正投入实用。
技术实现思路
本专利技术提供了一种,用来对变压器绝缘油进行脱气,从而提高变压器运行状态在线监测的准确性。为实现上述目的,本专利技术采用以下技术方案:一种基于油循环与分子交换的变压器油浸气体脱气装置,包括第一容器和第二容器,第一容器和第二容器之间以及第一容器顶部和第二容器侧面下端分别连接有油路管道,变压器油通过油路管道自第一容器顶部进入到第一容器内部最后从第二容器的底部流回至变压器内;所述第一容器的顶部进一步设置有两条气路管道,一条与氮气瓶相连,另外一条与气体分析装置或集气室相连;在所述第一容器的侧面上端和下端之间连接有一条油路循环管道,在所述油路循环管道上设置有第一油泵,第一容器底部的油通过该油路循环管道从第一容器顶部注入;所述第一容器与氮气瓶的连通通过第一电磁阀控制,所述第一容器与变压器油的连通通过第二电磁阀控制,所述第一容器与气体分析装置的连通通过第三电磁阀控制,所述第一容器和第二容器的连通通过第四电磁阀控制,所述第二容器与变压器油的连通通过第二油泵控制。作为本专利技术的优选实施例,所述第一容器与氮气瓶连接的气路管道内设置有液位检测器或气压计以检测第一容器内变压器油是否充满或液位降低到指定的位置。所述气路管道采用内径为0.5 2mm的不锈钢管道,油路管道采用内径为2 IOmm的不锈钢管道。所述第二容器的顶部与变压器内的空气相通。所述油路循环管道的一个端部设置有淋浴头,保证从第一容器底部抽取的变压器油以喷洒状从第一容器的顶部注入。一种上述脱气装置的脱气方法,包括以下步骤:第一电磁阀和第四电磁关闭,第三电磁阀打开,再打开第二电磁阀,变压器中的绝缘油被引入到第一容器中,直至第一容器已充满油;关闭第二电磁阀和第三电磁阀,再打开第一电磁阀和第四电磁阀,第一容器中的绝缘油流入第二容器,氮气瓶中氮气流入到第一容器中,直至第一容器中绝缘油液位降低到指定位置;关闭第一电磁阀和第四电磁阀,此时,系统进入气体分子待交换状态;打开第一油泵,第一容器中的绝缘油从底部抽出来,并从上端注回到第一容器中,此时,系统进入了气体分子交换过程;待15分钟-50分钟后,关闭第一油泵,打开第三电磁阀和第二电磁阀,把第一容器中的气体挤出,直到第一容器已满,然后关闭第三电磁阀,同时打开第四电磁阀,将第二容器中的绝缘油抽回到变压器中,以全部更新第一容器中的绝缘油;2_10分钟后,同时关闭第四电磁阀和第二电磁阀,装置重新回到系统准备工作状态。作为本专利技术的优选实施例,所述步骤2)中的指定位置指第一容器体积的1/8-1/4。作为本专利技术的优选实施例,所述步骤I)中,第一容器的变压器油是否充满由第一容器与氮气瓶之间的气路管道内设置的液位检测器或气压计检测,当采用气压计检测时,如果气压计显气压为一个大气压,则说明第一容器在充油时未充满,在第一容器液位降低时没有降低到指定位置,如果气压计显示气压大于一个大气压,则说明第一容器在充油时已充满变压器油,在第一容器液位降低时已降低到指定位置。作为本专利技术的优选实施例,在脱气之前,首先打开第二油泵,保证第二容器中的油抽干,等2-10分钟之后再进行。作为本专利技术的优选实施例,采用气压计检测第一容器内变压器油的多少时,所述第二容器的容积与第一容器内需要的气体体积大小相等;采用液位检测器检测第一容器内变压器油多少时,所述第二容器的容积大于等于第一容器内需要的气体体积。与现有技术相比,本专利技术至少具有以下优点:本专利技术采用实验室绝缘油振荡法脱气法中的注入氮气进行分子交换,采用从脱气容器底部抽取绝缘油并在脱气容器上端进行油喷洒的油循环方式取代实验室所用的振荡方式,以避免振荡器长期在线工作导致的噪声大,以及因磨损大、出现故障概率高的缺点,从而提高系统的稳定性与安全性。附图说明图1进入准备工作的状态的变压器油脱气装置结构示意图;图2进入气体分子交换状态的变压器油脱气装置结构示意图。其中,图1至图2中,I为第一容器,2为第二容器,3为第一电磁阀,4为第二电磁阀,5为第三电磁阀,6为第四电磁阀,7为第一油泵,8为第二油泵,9为液位检测器或气压检测器。具体实施例方式本专利技术提供一种,该方法照搬了变压器油浸气体与运行状态的关联性实验室研究中所采用的分子交换脱气原理,以保证变压器运行状态在线监测过程中,脱气环节不会带来其它的偏差。同时,采用油循环的方式取代振荡装置,以避免振荡器长期在线工作时,噪声大,磨损大,出现故障的概率高的缺点,从而提高系统的稳定性与安全性。为了实现上述任务,本专利技术采用如下技术解决方案:本专利技术基于油循环与分子交换的变压器油浸气体脱气装置主要由四个电磁阀(SP第一电磁阀3、第二电磁阀4、第三电磁阀5、第四电磁阀6)、一个液位检测器或压力计9、两个容器(即第一容器I和第二容器2)、两个油泵(即第一油泵7和第二油泵8)、一个液化氮气瓶、以及气路管道和油路管道构成,如图1所示。所述液化氮气瓶通过较细的气路管道与第一电磁阀3相连,第一电磁阀3通过气路管道连接在第本文档来自技高网
...

【技术保护点】
一种基于油循环与分子交换的变压器油浸气体脱气装置,其特征在于:包括第一容器(1)和第二容器(2),第一容器(1)和第二容器(2)之间以及第一容器(1)顶部和第二容器(2)侧面下端分别连接有油路管道,变压器油通过油路管道自第一容器(1)顶部进入到第一容器(1)内部最后从第二容器(2)的底部流回至变压器内;所述第一容器(1)的顶部进一步设置有两条气路管道,一条与氮气瓶相连,另外一条与气体分析装置或集气室相连;在所述第一容器(1)的侧面上端和下端之间连接有一条油路循环管道,在所述油路循环管道上设置有第一油泵(7),第一容器(1)底部的油通过该油路循环管道从第一容器(1)顶部注入;所述第一容器(1)与氮气瓶的连通通过第一电磁阀(3)控制,所述第一容器(1)与变压器油的连通通过第二电磁阀(4)控制,所述第一容器(1)与气体分析装置的连通通过第三电磁阀(5)控制,所述第一容器(1)和第二容器(2)的连通通过第四电磁阀(6)控制,所述第二容器与变压器油的连通通过第二油泵(8)控制。

【技术特征摘要】
1.一种基于油循环与分子交换的变压器油浸气体脱气装置,其特征在于:包括第一容器(I)和第二容器(2),第一容器(I)和第二容器(2)之间以及第一容器(I)顶部和第二容器(2)侧面下端分别连接有油路管道,变压器油通过油路管道自第一容器(I)顶部进入到第一容器(I)内部最后从第二容器(2 )的底部流回至变压器内;所述第一容器(I)的顶部进一步设置有两条气路管道,一条与氮气瓶相连,另外一条与气体分析装置或集气室相连;在所述第一容器(I)的侧面上端和下端之间连接有一条油路循环管道,在所述油路循环管道上设置有第一油泵(7),第一容器(I)底部的油通过该油路循环管道从第一容器(I)顶部注入;所述第一容器(I)与氮气瓶的连通通过第一电磁阀(3)控制,所述第一容器(I)与变压器油的连通通过第二电磁阀(4)控制,所述第一容器(I)与气体分析装置的连通通过第三电磁阀(5 )控制,所述第一容器(I)和第二容器(2 )的连通通过第四电磁阀(6 )控制,所述第二容器与变压器油的连通通过第二油泵(8)控制。2.如权利要求1所述的一种基于油循环与分子交换的变压器油浸气体脱气装置,其特征在于:所述第一容器(I)与氮气瓶连接的气路管道内设置有液位检测器或气压计(9)以检测第一容器(I)内变压器油是否充满或液位降低到指定的位置。3.如权利要求1所述的一种基于油循环与分子交换的变压器油浸气体脱气装置,其特征在于:所述气路管道采用内径为0.5 2mm的不锈钢管道,油路管道采用内径为2 IOmm的不锈钢管道。4.如权利要求1-3中任意一项所述的一种基于油循环与分子交换的变压器油浸气体脱气装置,其特征在于:所述第二容器(2)的顶部与变压器内的空气相通。5.如权利要求1-3中任意一项所述的一种基于油循环与分子交换的变压器油浸气体脱气装置,其特征在于:所述油路循环管道的一个端部设置有淋浴头,保证从第一容器底部抽取的变压器油以喷洒状从第一容器的顶部注入。6.一种基于权利要求1所述的脱气装置的脱气方法,其特征在于:包括以下步骤: 1)第一电磁阀(3)和第四电磁(6)关闭,...

【专利技术属性】
技术研发人员:汤晓君王尔珍赵安新赵明李文栋刘君华
申请(专利权)人:西安交通大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1