【技术实现步骤摘要】
本专利技术公开的ー种特殊溶胶及其成膜方法,主要应用于三维结构的有机高分子材料表面改性,各种材料都有各自的优点,也有各自的缺陷,通过表面覆盖具有特殊性能的薄膜,可以改善材料表面的各种性能,弥补材料表面的缺陷;有机高分子材料或表面硬度较低、或耐摩擦、抗刮划性能较低,或耐候性、耐化性较差,为满足各种产品的需求,对有机高分子材料表面进行改性,弥补有机高分子材料的各种表面性能缺陷,具有迫切的市场需求和广阔的市场应用前景。
技术介绍
溶胶凝胶法溶胶是指通过水解和聚合作用,形成的有机或无机的纳米或微米级的粒子,这些粒子通常带有电荷,并由于电荷作用,吸附ー层溶剂分子,形成由溶剂包覆的纳米或微米粒子,即胶体粒子,这些胶体粒子由于带有电荷而相互排斥,从而能以悬浮状态存在于溶剂中,即形成溶胶;胶体粒子由于失去电荷,或者包覆在外圈的溶剂层被破坏,胶体粒子发生聚合,溶胶发生固化即形成凝胶。溶胶制造中存在一个较大的难题是,溶胶由于各种因素的影响,失去稳定性,发生凝胶。这给溶胶的大規模制造和应用形成严重的制約,解决溶胶的稳定性,是拓展溶胶应用空间的如提条件。溶胶通常采用浸润提拉、匀胶甩膜等エ艺制备薄膜,这些方法的ー个共同缺陷就是,只适合于ニ维平面涂膜,对于三维基材,则无法涂膜。溶胶成膜通常在较高的温度下固化,有机薄膜固化一般在130度至200度,无机薄膜固化一般在500度至600度;即使在130度时,许多常用的有机高分子材料都可能发生软化变形;在100度以下的温度,使溶胶成膜固化,是ー个适用而又困难的挑战。
技术实现思路
溶胶的前体可以是有机金属化合物、金属醇盐、无机盐、有机小分子或其 ...
【技术保护点】
一种可长期稳定存储、可低温固化的微纳米溶胶制备方法及其固化形成超薄涂层的方法,包括以下步骤:1)按照反应式??????????????????????????????????????????????????????水解通式为RxM(OR)z?x的有机金属化合物,形成溶胶,式中R为有机官能基,M选自硅、铝、钛、锆等或它们的混合物,R’为可水解的低分子量烷基,z为M的化合价,而x小于z,至少为1,y至少为1并小于z?x;或按照反应式?????水解一种通式为M’(OR’’)z’的金属醇盐,形成金属醇盐溶胶,式中M’为形成可水解醇盐的金属,R’’为低分子量烷基,z’为M’的化合价,y’至少为1和小于z’;2)加入无机盐的溶解液、有机小分子或其预聚体作为前体,混合或偶联,形成较高温条件下可长期稳定存储的复合纳米溶胶;添加无机盐,可以使溶胶成膜后获得高硬度、耐摩擦、抗刮划、耐候等多种性能,添加有机小分子或其预聚物作为单体,可以使溶胶成膜后获得耐冲击、抗折、耐化学腐蚀、耐候、防脏污与防水等多种性能;3)添加带长链的有机小分子或其预聚物,与溶胶颗粒结合,同时使溶胶保持较高的酸度值,从而阻止溶胶颗粒的团 ...
【技术特征摘要】
1.一种可长期稳定存储、可低温固化的微纳米溶胶制备方法及其固化形成超薄涂层的方法,包括以下步骤 1)按照反应式KM(0R'')z-, +yH20 -> RrM(OR'h(OH)y +yR'OH 水解通式为RxM(OR)z_x的有机金属化合物,形成溶胶,式中R为有机官能基,M选自硅、铝、钛、锆等或它们的混合物,R’为可水解的低分子量烷基,z为M的化合价,而X小于z,至少为1,y至少为I并小于z-x ;或 按照反应式+y'H20 M'(OH)y. +y'R''OH 水解一种通式为M’(OR’ ’)z,的金属醇盐,形成金属醇盐溶胶,式中M’为形成可水解醇盐的金属,R’’为低分子量烷基,z’为M’的化合价,y’至少为I和小于z’ ; 2)加入无机盐的溶解液、有机小分子或其预聚体作为前体,混合或偶联,形成较高温条件下可长期稳定存储的复合纳米溶胶;添加无机盐,可以使溶胶成膜后获得高硬度、耐摩擦、抗刮划、耐候等多种性能,添加有机小分子或其预聚物作为单体,可以使溶胶成膜后获得耐冲击、抗折、耐化学腐蚀、耐候、防脏污与防水等多种性能; 3)添加带长链的有机小分子或其预聚物,与溶胶颗粒结合,同时使溶胶保持较高的酸度值,从而阻止溶胶颗粒的团聚,使溶胶可以在较高的环境温度下(如不超过摄氏60度)长期存储而不发生凝胶或沉淀; 4)添加玻璃化温度较高的有机小分子或其预聚物作为溶胶成膜单体,同时采用混合醚化的氨基树脂或氟碳树脂,有效加速溶胶固化速度,降低溶胶固化成膜的温度; 5)溶胶可以但不仅限于高压喷雾、喷淋、浸润、压辊等方法,喷涂到复杂的三维结构的有机高分子...
【专利技术属性】
技术研发人员:郭子钰,朱玉涵,其他发明人请求不公开姓名,
申请(专利权)人:上海迪道科技有限公司,郭景康,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。