当前位置: 首页 > 专利查询>南京大学专利>正文

一种改进纳米零价铁粒子的制备方法技术

技术编号:830464 阅读:188 留言:0更新日期:2012-04-11 18:40
本发明专利技术公开了改进纳米零价铁粒子及其制备方法。这种纳米铁粒子粒径分布范围为20~50nm,平均粒径为30~40nm,比表面积为60~70m↑[2]/g。制备方法主要步骤为:先配制可溶性铁盐水溶液以及NaBH↓[4]或KBH↓[4]乙醇-水混合溶液;其中乙醇∶水的体积比为1∶1~20。向上述可溶性铁盐水溶液中按比例加入聚乙烯吡咯烷酮,搅拌使之充分混合均匀;搅拌下,将NaBH↓[4]或KBH↓[4]乙醇水溶液添加至上述可溶性铁盐水溶液中,继续搅拌待溶液变为黑色时停止;用磁选法选出纳米零价铁粒子,先用蒸馏水充分洗涤,然后用丙酮或乙醇充分洗涤,保存于丙酮或乙醇中。采用本发明专利技术方法制备得到的纳米铁粒子分布均匀,平均粒径小,分散性得到很大改善,比表面积大,且没有出现氧化铁杂质,纯度高。

【技术实现步骤摘要】

本专利技术涉及,更具体的说是一种利用改进液相还原法制备纳米零价铁粒子的方法及制备得到的改进纳米零价铁粒子。
技术介绍
零价铁电负性较大,具有较强的还原性。利用它来处理水体中的某些微量有机污染物,并可以起到催化剂的作用,加速反应过程。室内实验和现场小试均表明,零价铁颗粒可以降解卤代脂肪烃类、卤代芳烃类、以及部分多氯联苯类化学污染物等,即当卤代烃或卤代芳烃等污染物上的卤素原子得到零价铁提供的电子后,卤素就从分子上脱落下来,使卤代污染物转化为无毒的或易被生物降解的有机物,如乙烯等。零价铁颗粒由于其价格便宜,资源丰富,可以被大量应用于修复受到有机氯污染的土壤和水体,并且可以同时处理多种污染物,例如重金属、染料、取代硝基苯、农药等,因此具有很好的应用前景。但是应用普通零价铁粉还原来降解氯代有机物目前还存在着一些技术瓶颈(污染土壤及地下水的PRB技术及展望。环境污染治理技术与设备,2001,2(5)48-53)首先由于普通铁粉的反应性比较低,只能部分降解氯代有机化合物,不能完全脱去氯原子,因此造成还原反应不彻底,产生氯代副产物;且反应速率很慢,随着氯原子个数的减少,降解反应的速率越来越小。国内外研究者尝试发展纳米尺度的铁颗粒,利用纳米颗粒特有的表面效应和小尺寸效应,提高零价铁颗粒的反应活性和处理效率,近年来纳米铁颗粒在废水处理方面应用广泛。有报道研究了纳米铁降解六种PCB的情况;采用双金属系统(Fe/Pd和Mg/Pd)同时降解PCB和DDT,均取得了很好的降解效果。因此研究纳米铁颗粒的制备方法有着重要的意义。目前纳米铁颗粒的制备方法主要包括气相方法,液相方法和固相方法。气相方法主要包括惰性气体冷凝法(IGC)、热等离子体法、溅射法、气相还原法、气相热分解法。总体说来,气相方法制备的纳米铁颗粒,纯度高、粒径小、分散均匀;但是气相还原法对设备要求较高,设备昂贵,同时一般要求高温高压,操作不安全,因此很难在实验室进行,适合大规模工业生产。固相制备方法主要包括高能球磨法、深度塑性变形法以及固相还原法。总体来说,固相制备方法工艺比较简单,可操作性强,适合大规模生产的要求。但是,制备过程中颗粒的粒径不好控制,且很容易发生氧化或引入杂质等问题,且球磨机结构复杂,有许多易磨损部件;深度塑性变形法制备的纳米铁颗粒纯度低,粒径范围不好控制;固相还原法容易发生团聚,粒径分布不均匀等;因此实验室采用单纯固相方法制备纳米铁颗粒的实例不是很多,一般是将固相方法与其它方法连用。液相制备法主要包括液相还原法、微乳液法、沉淀法、溶胶-凝胶法、电化学方法。液相还原法的原理为溶液中的金属铁盐(主要是Fe(II)和Fe(III))在强还原剂(KBH4、NaBH4等)的作用下,还原为单质金属铁粒子。液相还原法因其原理、设备简单,可操作性强等优点在纳米铁颗粒的实验室制备方面有着极其广泛的应用。Lien等(Nanoscale iron particles for complete reduction ofchlorinated ethenes,Colloids and Surfaces APhysicochemical andEngineering Aspects,2001,19197-105.)则采用此方法制备了钯/铁双金属纳米颗粒用于降解氯代烃类污染物,颗粒粒径在30-100nm,比表面积为35m2/g。徐新华等人(金属催化还原技术对p-二氯苯的脱氯.环境科学,2004,25(6)101;纳米级Pd/Fe双金属体系对水中2,4-二氯苯酚脱氯的催化作用.催化学报,2004,25(2)144.)采用液相还原法制备的纳米铁颗粒粒径在30-100nm。微乳液法的原理是利用金属盐和一定的有机溶剂和表面活性剂形成微乳液,在其水核(称为微反应器)微区内控制胶粒成核生长,经过热处理后得到纳米颗粒。张朝平等(微乳液法制备超细包裹型铁粉.应用化学,2000,3(17)248-252.)采用该方法制备了粒径约120nm的包裹型超细铁粉。Li等(Microemulsion and solutionapproaches to nanoparticle iron production for degradation oftrichloroethylene.Colloids and Surfaces APhysicochem.Eng.Aspects,2003,223103-112)的研究发现微乳液法制备的纳米铁颗粒的平均粒径小于液相还原法制备的纳米铁颗粒。但是微乳液法与液相还原法相比存在成本高、操作工艺相对较复杂的缺点。沉淀法就是在溶液状态下,将组分原子混合,向溶液中加入适当的沉淀剂来制备前驱体沉淀物,再将此沉淀物进行煅烧即可成为纳米铁颗粒。溶胶-凝胶法是指金属铁盐经过水解,溶胶,凝胶而固化,然后再经过特殊的热处理而成为纳米粉末的一种方法。电化学法制得的纳米晶体材料密度高,孔隙率小,受尺寸和形状的限制少,是一种成本低,适用于大规模生产纳米金属微粒的方法。目前,国内的研究不是很多,张智敏(电化学沉积法制备纳米铁微粒及其性能的研究.山西大学学报(自然科学版),2003,(26)235~237)首次将表面活性剂十二烷基苯磺酸钠(DBS)引入电化学沉积过程制备了较均匀的纳米铁颗粒。总之液相还原法原理简单,设备简单,可操作性强,生产成本低等,但是也存在粒径分布不均匀,容易发生团聚等缺陷;微乳液法粒径小,分布均匀,易实现高纯化,但是成本相对较高,工艺较为复杂;沉淀法反应温度低,操作简单,成本低,颗粒较均匀;但是沉淀呈凝胶状,难于水洗和过滤;沉淀剂作为杂质混入粉料,纯度低。溶胶-凝胶法化学均匀性好,不易引入杂质,合成温度低,成份容易控制;但是原材料价格昂贵,烘干后的凝胶颗粒物烧结性不好,干燥时收缩大。电化学方法设备简单,密度高,反应温度低,成本低等;但是易引入微米级大小的颗粒,沉积也不均匀。液相还原法因其原理简单,设备简单,操作性强等优点在实验室中应用广泛。但是液相还原法最大的缺点是粒径分布不均匀,容易发生团聚,因此必须通过添加一定的分散剂来克服这一缺陷。同时,因为铁颗粒在空气中很容易发生氧化而生成氧化铁,因此所搜索文献中的所有操作工艺均是在氮气保护氛围中,将NaBH4或KBH4逐滴的添加到Fe2+或Fe3+的金属盐溶液中。通过实验我们发现在制备过程中,氮气保护较难控制,逐滴添加的操作工艺延长了反应时间,而使得过程中生成的铁颗粒容易发生氧化,从而导致最终的实验结果失败。聚乙烯吡咯烷酮(PVP,其中PVP K-30的分子量为40000-90000)是一种水溶性的高分子精细化学品,由于它具有优异的溶解性,成膜性,分散稳定性,生理相容性等优点,在医药卫生,日用化工,办公用品,纺织印染工业等重要领域有着广泛的应用,可用作颜料、印刷、墨水、纺织印染、彩色显像管中的表面包覆剂、分散剂、增稠剂和黏合剂,并可改进粘结剂对金属、玻璃、塑料等材料的粘结性能。另外,在分离膜、医用高分子材料、光固树脂、光固涂料、光导纤维、激光视盘等新兴高科技领域的应用也日益广泛。一种纳米铁粉的制备方法(CN200410064751.6)和纳米铁的制造方法(CN200410084285.8)都公开了纳米铁的制备方法,不过本文档来自技高网...

【技术保护点】
一种改进纳米零价铁粒子的制备方法,其主要包括以下步骤:(A)配制浓度为0.01M~0.1M的可溶性铁盐乙醇-水混合溶液,配制浓度为可溶性铁盐溶液浓度2~4倍的NaBH↓[4]或KBH↓[4]乙醇-水混合溶液;其中乙醇∶水的体积比为1∶1~20。(B)向上述可溶性铁盐乙醇-水混合溶液中按5~20g/L的比例加入聚乙烯吡咯烷酮,搅拌使之充分混合均匀;(C)机械搅拌下,将NaBH↓[4]或KBH↓[4]乙醇-水混合溶液迅速添加至上述可溶性铁盐乙醇-水溶液中,使Fe↑[2+]/Fe↑[3+]∶BH↓[4]↑[-]的摩尔比例为:1∶2~4,继续搅拌待溶液变为黑色时停止;(D)用磁选法选出纳米零价铁粒子,先用蒸馏水充分洗涤,然后用丙酮或乙醇充分洗涤,保存于丙酮或乙醇中。

【技术特征摘要】

【专利技术属性】
技术研发人员:王晓栋高树梅刘洋赵欣王海燕唐信英刘树深王连生
申请(专利权)人:南京大学
类型:发明
国别省市:84[中国|南京]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1