当前位置: 首页 > 专利查询>邵俊松专利>正文

基于实时测量多频段频率分量占比判断直流电弧故障的方法技术

技术编号:8160721 阅读:290 留言:0更新日期:2013-01-07 19:05
本发明专利技术涉及基于实时测量多频段频率分量占比判断直流电弧故障的方法。随着光伏发电的大规模应用,特别是光伏电池板在建筑物屋顶和外墙的广泛应用,多地多处发生了由于光伏发电系统所导致的火灾。通过分析发现,这类火灾基本是由光伏发电系统的直流电弧故障引起的,因此检测和隔离引发设备损坏及火灾隐患的直流电弧故障就成为必须解决的问题,但由于光伏系统直流电弧故障的特殊性,常规的基于故障波形的电弧故障检测原理并不适用于光伏系统直流电弧故障。本发明专利技术的核心思想是基于故障电弧引发火灾危害的本质是由于电弧中蕴含能量过大,通过检测电压电流波形中的多个频率段的频谱分量能量占总频谱的能源比这一方法,可不受系统中其他噪音影响,快速可靠的检测出可能引发火灾的直流电弧故障,确保光伏系统的安全。

【技术实现步骤摘要】

本专利技术属光伏电气故障检测
,更准确地说本专利技术涉及一种基于实时测量电压电流中多个频段的频率分量占比,判断光伏系统中是否发生了直流电弧故障的方法。
技术介绍
电弧故障保护并不是一个新的事物,研究发现在没有过电流发生的情况下由小电流引起的故障电弧也有足够的能量引发打火从而引起火灾,从二十世纪九十年代开始,在北美,交流系统中配备电弧故障保护器成为一个安全性的强制性标准。随着光伏发电的大规模应用,特别是光伏电池板在建筑物屋顶和外墙的广泛应用,多地多处发生了由于光伏发电系统所导致的火灾。通过分析发现,这类火灾基本是由光伏发电系统的直流电弧故障引起的,因此检测和隔离引发设备损坏及火灾隐患的直流电弧故障就成为必须解决的问题。但以往的电弧故障保护器应用在光伏系统中,有两个方面是不一致的第一、这种电弧故障是由直流引发的;第二、这种电弧故障产生地点可能在远端,距离电弧检测设备安装位置之间可能隔有正常发电的光伏电池板。这两方面的因素导致常规的交流电弧故障保护器并不能应用在这种场合,必须研制一种新型的直流电弧故障保护设备以满足光伏系统的需要。目前常规的电弧故障检测原理是根据对负载电流和电压的模数转换采样,在短时间内检测出电弧的产生,之后根据当时电压和电流的关系,采用傅立叶变换法则,得到负载的相位角状态,进而获得负载类型,并与已知的绝大多数负载电弧特征曲线与电弧特征比较,同时采用自学习方式,实时更新运行状态产生的正常电弧,并与之比较,进行判断得出结论,确定是负载运转所产生的正常电弧还是负载在非正常状态所产生的故障电弧。这种方式运用在交流低压系统中还是具有可行性的,但在光伏直流系统中,由于光伏发电特性是随时间和环境不可预测变化的;各类逆变器干扰波形也是不同且随负载变化;电弧故障发生地点和检测点之间还有不等数量的发电光伏板间隔,造成故障电弧波形的畸变也是不可预测变化的,因此前述的与已知故障特性比较和自学习两种模式都不适用于光伏发电系统中的直流电弧故障检测。本专利技术通过研究故障电弧的本质,检测电压电流波形中的多个频率段的频谱分量能量占总频谱的能源比这一方法,创新性的开拓了一种新的直流电弧故障检测方法,可快速可靠的检测出可能引发火灾的直流电弧故障,确保光伏系统的安全。
技术实现思路
本专利技术目的是通过检测电压电流波形中的多频率段的频谱分量能量占总频谱的能量比,确认系统中是否产生了可能引发火灾的直流电弧故障,确保光伏系统的安全运行,防止故障电弧引起的火灾发生。电弧故障可能引发火灾的原因是在于其电弧中蕴含能量比较大,从电弧波形中分析,其主要能量分布在一个或多个较宽的频率带中。因此本专利技术通过检测光伏发电系统中的直流分量与其他高次频谱的能量比率关系来作为区分直流电弧故障的主要依据。本专利技术采用以下的技术方案来实现,包括下述步骤I)实时采集电压值和电流值,并通过IHz低通数字滤波得到电压直流分量Udc和电流直流分量ID。;通过IHz高通数字滤波得到其他频率分量的噪音电压Uhy与噪音电流U。2)实时计算直流分量功率Sdc = UDC*IDC及其他频谱功率Shy = Uhy^Ihyo3)实时计算电弧功率比系数KaM = SHY/SDC,当KaM小于预先设定的定值KNOTmal,则判断此时光伏系统处于正常状态,返回到步骤I);如果Karc大于预先设定的定值KNOTmal,则判断此时光伏系统处于电弧故障检测状态,转向步骤4),并保存此时的SD。为SDCNOTmal。4)当光伏系统处于电弧故障检测状态时,每5kHz设一个数字带通滤波器,左右带宽各为2. 5kHz,实时计算I-IMHz频率范围内的各频率段的电压值和电流值,并根据功率计 算公式S = U*I,得到有功功率值Sm,Shy2, . . . Shy2c ,并计算得到每个频段功率值与正常状态下直流功率值比 KflYl — SHY1/SDCNormal, Khy2 — S^/SncNormal · · · Khy200 — SHY20o/SDCNormal。5)设定值Kstring = 1+Nstring/100, Nstring为一串光伏阵列板中的光伏板总数量(一般为 10 至 21 个);计算浮动门槛值 Kakc = Kstring* (KHY1+KHY2+. . . +Khy2J/200。6)实时判断KHY1,KHY2,. . . Khy200是否大于浮动门槛值KAK,当判断出有KHYi (i为I至200)大于Kak时,对该频段的Sm (i为I至200)进行时间累计,获得该频段在Tak时间段内的超过浮动门槛值Kakc的能量值WAKi (i为I至200),其中Takc为从步骤3判断出的非正常状态开始累计时间,最长到2000ms,超过2000ms如果还没有进入步骤I正常状态或判断出电弧故障(步骤9),则Taec按时间反向递减至O, 2000ms前SHYi (i为I至200)累计的并计入WAKi (i为I至200)的功率值依次减去。7)根据Sratomal,虚拟计算得到在Tak时间内的累计的能量Wramial =SDCNormal*TARC °8)实时判断Km,KHY2,. . . Khy200中大于Kakc的频段数,当等于或超过5个时,即累加所有Wakm (i为I至200),得到WAKSum = Σ WAKi,转向步骤9);如果大于Kak的频段数不到5个时,则转向步骤4)。9)实时判断WA_是否大于WA_eE =,其中Kkk为事前设定的判断电弧故障的可靠性系数,一般为O. 8,当Wakkud大于WAKJUDeE时,判断光伏系统发生了直流电弧故障,否则没有发生电弧故障,转到步骤4)。本专利技术中,披露了一种实现光伏系统中直流电弧故障的检测方法,该方法基于能量守恒原理,通过计算光伏系统中高次频率频谱能量,以及与正常光伏系统同时间内的发电能量之间比值关系,当高次频率频谱能量超过正常发电能量一定比例时,认为光伏系统中发生了可能引发火灾的直流电弧故障。其中上述步骤中低通/高通/带通数字滤波器的算法是已经成熟的工程应用算法,不在此描述。3、有益效果该方法突破了传统的,利用电压电流波形拟合检测电弧故障的思路,从电弧危害的能量本质上考虑检测算法,通过计算电弧故障能量占光伏正常发电能量的比例关系,当电弧故障能量占比过大时,即可确认光伏系统中发生了有危害的电弧故障。该方法原理简单,算法可靠,避免了直接从电压电流波形中检测电弧故障的种种不确定因素。附图说明图I为本专利技术方法的流程图。具体实施例方式下面结合附图1,对本专利技术方法进行详细描述。图I中步骤I描述的是通过数字滤波器,获得的电压直流分量Udc和电流直流分量Idc及高次频率分量的电压Uhy与电流IHY。图I中步骤2描述的实时计算直流分量功率SD。= UDC*IDC及其他频谱功率Shy =Ti木τ uHY个丄HY0图I中步骤3描述的实时计算电弧功率比系数Km。= ShyZSdc,当Karc小于预先设定的定值Ktomal,则判断此时光伏系统处于正常状态,返回到步骤I);如果Km。大于预先设定的定值KNOTmal,则判断此时光伏系统处于电弧故障检测状态,转向步骤4),并保存此时的SD。^DCNormal °图I中步骤4描述的当光伏系统处于电弧故障检测状态时,每5kHz本文档来自技高网
...

【技术保护点】
实时测量电压电流中多个频段的频率分量占比,判断光伏系统中直流电弧故障的方法,其特征在于包括下列步骤:1)实时采集电压值和电流值,并通过1Hz低通数字滤波得到电压直流分量UDC和电流直流分量IDC;通过1Hz高通数字滤波得到其他频率分量的噪音电压UHY与噪音电流IHY;2)实时计算直流分量功率SDC=UDC*IDC及其他噪音频谱功率SHY=UHY*IHY;3)实时计算电弧功率比系数Karc=SHY/SDC,当Karc小于预先设定的定值KNormal,则判断此时光伏系统处于正常状态,返回到步骤1);如果Karc大于预先设定的定值KNormal,则判断此时光伏系统处于电弧故障检测状态,转向步骤4),并保存此时的SDC为SDCNormal;4)当光伏系统处于电弧故障检测状态时,每5kHz设一个数字带通滤波器,左右带宽各为2.5kHz,实时计算1?1MHz频率范围内的各频率段的电压值和电流值,并根据功率计算公式S=U*I,得到有功功率值SHY1,SHY2,...SHY200,并计算得到每个频段功率值与正常状态下直流功率值比KHY1=SHY1/SDCNormal,KHY2=SHY2/SDCNormal,...KHY200=SHY200/SDCNormal;5)设定值Kstring=1+Nstring/100,Nstring为一串光伏阵列板中的光伏板总数量(一般为10至21个);计算浮动门槛值KARC=Kstring*(KHY1+KHY2+...+KHY200)/200;6)实时判断KHY1,KHY2,...KHY200是否大于浮动门槛值KARC,当判断出有KHYi(i为1至200)大于KARC时,对该频段的SHYi(i为1至200)进行时间累计。获得该频段在TARC时间段内的超过浮动门槛值KARC的能量值WARCi(i为1至200),其中TARC为从步骤3判断出的非正常状态开始累计时间,最长到2000ms,超过2000ms如果还没有进入步骤1正常状态或判断出电弧故障(步骤9),则TARC按时间反向递减至0,2000ms前SHYi(i为1至200)累计的并计入WARCi(i 为1至200)的功率值依次减去;7)根据SDCNormal,虚拟计算得到在TARC时间内的累计的能量WDCNormal=SDCNormal*TARC;8)实时判断KHY1,KHY2,...KHY200中大于KARC的频段数,当等于或超过5个时,即累加所有WARCi(i为1至200),得到WARCSum=∑WARCi,转向步骤9):如果大于KARC的频段数不到5个时,则转向步骤4);9)实时判断WARCSum是否大于WARCJUDGE=Kkk*Nstring/100*WDCNormal,其中Kkk为事前设定的判断电弧故障的可靠性系数,一般为0.8,当WARCSum大于WARCJUDGE时,判断光伏系统发生了直流电弧故障,否则没有发生电弧故障,转到步骤4)。...

【技术特征摘要】

【专利技术属性】
技术研发人员:邵俊松
申请(专利权)人:邵俊松
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1