一种用于大厚板MIG/MAG多层多道焊接的自主移动式机器人系统技术方案

技术编号:7805233 阅读:242 留言:0更新日期:2012-09-27 01:30
本发明专利技术属于机器人焊接技术领域,具体来说是一种用于大厚板MIG/MAG多层多道焊接的自主移动式机器人系统,包括机器人本体、控制系统和MIG/MAG焊接系统,机器人本体包括爬行机构和操作机构,控制系统包括传感系统、机器人本体控制箱和机器人主控系统;MIG/MAG焊接系统包括MIG/MAG焊枪、MIG/MAG焊接电源、送丝机、保护气和焊接冷却系统;机器人本体、控制系统和MIG/MAG焊接系统三者通过线缆连接。本发明专利技术的优点在于爬行机构采用接触式磁轮吸附和非接触式间隙吸附的复合方式以及三轮全驱动轮式移动方式,机器人可在作业对象表面全位置自主灵活移动、可靠吸附并实施全位置焊接作业,系统综合性能好。

【技术实现步骤摘要】

本专利技术属于机器人焊接
,具体来说是ー种用于大厚板MIG/MAG多层多道焊接的自主移动式机器人系统
技术介绍
大型钢结构的焊接影响其制造效率及质量,机器人自动化、智能化焊接是解决这一问题的主要手段。对于大型钢结构的焊接,部件本身结构、重量影响不适合旋转或转动,因此不适合专机或固定式机械手作业。在的重要部件上,保证稳定的焊接质量,是其关键问题。受焊接工人情緒、焊接劳动强度的影响,手工MIG/MAG多层多道焊接质量很难得以稳定。机器人焊接系统一般由焊接承载机构、焊接系统、控制系统组成。承载机构又分为 固定式エ业机械手、轨道式小车、自主移动式机构;焊接系统由MIG/MAG焊接电源、焊枪、保护气、送丝机构等组成;控制系统负责承载机构的运动、跟踪、焊接质量控制等。本专利技术涉及ー种用于大厚板MIG/MAG多层多道焊接的自主移动式机器人系统。目前常用的大型钢结构焊接的是轨道式机器人焊接系统,该系统由机器人运行轨道、机器人及焊接系统组成,使用时需要预先进行轨道铺设,仅适用于能够铺设轨道的焊縫,并且轨道的柔性在一定范围内,无法适应焊缝形式的变换。大型设备属于单件小批量产品,多数焊缝是非标结构,焊缝整体结构形式复杂,因此,这种轨道式结构的应用受到限制。如专利申请号为201010180754. 1,申请日为2010年5月14日,名称为“焊接设定装置、焊接机器人系统及焊接设定方法”的专利技术专利,其主要技术方案为一种同时多层堆焊设定装置,具备层叠图案确定部,其基于各输入数据和层叠图案数据基值,确定与对象的接头对应的焊道的层叠图案;单独运转用焊道确定部,其在对象的两个接头的层叠图案中,表示对焊道进行组合时的熔敷金属量的剖面面积的差值超过预定的阈值时,将剖面面积大的一方的焊道作为单独运转用焊道排除之后,确定同时焊接的组合;焊接诸条件确定部,其确定包含与基于输入焊接条件算出的焊丝送给速度相对应的电流值及接缝形成位置的每个焊道焊接条件;动作程序生成部,其生成基于确定的焊接条件的机器人动作程序,并设定在机器人控制装置内。上述专利的焊接机器人系统采用轨道式排布,无法实现焊缝自动跟踪识别及自主移动功能,而且该焊接系统适合流水线形式的焊接并不适合对大型钢结构件实行自主焊接,焊缝类型区别较大。又如专利申请号为201019063009. 6,申请日为2010年2月5日,名称为“ー种用于注塑机机架的焊接机器人工作站系统”的专利技术专利,包括焊接机器人、焊接装置、机器人移动滑台、焊枪冷却装置、智能寻位跟踪装置和机器人控制箱,焊接机器人安装在机器人移动滑台上;焊接装置分别与焊接机器人和焊枪冷却装置连接;机器人控制箱分别与焊接机器人、机器人移动滑台、焊接装置和智能寻位跟踪装置相连,用于控制焊接机器人的移动和焊接。上述专利的焊接机器人系统采用轨道式机器人焊接系统,无法实现机器人本体自动跟踪焊缝自由移动并完成焊接而且该机器人针对注塑机机架焊接,焊缝类型范围很有限。清华大学开发了履带式磁吸附自主移动焊接机器人,履带式吸附移动机构吸附可靠性好但转向性能差,造成机器人运动灵活性差、作业位置调整困难。北京石油化工学院开发了磁轮式自主移动焊接机器人,磁轮式吸附移动机构运动灵活性好但吸附能力差,机器人吸附可靠性低。所以现有的自主移动式焊接机器人存在运动灵活性和吸附能力不能兼具的问题。
技术实现思路
为了克服现有的用于大厚板MIG/MAG多层多道焊接自主移动式机器人存在运动灵活性和吸附能力不能兼具的问题,现在特别提出能满足大型钢结构全位置、高效高质量智能焊接的ー种用于大厚板MIG/MAG多层多道焊接的自主移动式机器人系统。为实现上述目的,本专利技术的技术方案如下 ー种用于大厚板MIG/MAG多层多道焊接的自主移动式机器人系统,包括机器人本体、控制系统和MIG/MAG焊接系统,其特征在于 机器人本体包括爬行机构和操作机构所述爬行机构包括采用驱动转向一体化磁轮的前轮模块、采用永磁间隙吸附装置的后轮模块、连接前后轮的车架和安装在车架上的电机驱动控制器;所述的操作机构包括十字滑块和摆动机构,摆动机构前端夹持MIG/MAG焊枪,水平和垂直两个方向的自由度由两个丝杠导轨组合单元组合而成的十字滑块实现,摆动机构采用步进电机搭配蜗轮蜗杆減速器; 控制系统包括传感系统、机器人本体控制箱和机器人主控系统; MIG/MAG焊接系统包括MIG/MAG焊枪、MIG/MAG焊接电源、送丝机、保护气和焊接冷却系统; 机器人本体、控制系统和MIG/MAG焊接系统三者通过线缆连接。MIG/MAG焊枪、MIG/MAG焊接电源以及MIG/MAG焊接系统之间的连接关系与其他焊接系统的焊枪、焊接电源以及焊接系统的连接关系存在明显不同,但是上述不同之处以及具体如何连接是则本领域技术人员所知晓的。所述前轮模块和后轮模块分别安装在车架两端,在后轮模块处设置有后轮底盘,后轮底盘上设置有永磁体; 前轮模块为驱动转向一体化磁轮,包括永磁体和车轮,前轮的永磁体采用沿厚度方向磁化的环形永磁体;后轮模块采用永磁间隙吸附方式,包括永磁间隙吸附装置和车轮,永磁间隙吸附装置包括环绕车轮安装在后轮底盘上的永磁体,永磁间隙吸附装置环绕后轮安装在底盘上,所述永磁间隙吸附装置和导磁壁面间是非接触的,通过调节底盘和导磁壁面之间的距离设定永磁吸附装置和导磁壁面间的气隙; 所述爬行机构采用三轮结构,各车轮均为驱动轮,依靠两后轮的差速及前轮的受控转向角实现在导磁壁面上的转向和直线运动。所述的操作机构包括十字滑块横轴、十字滑块纵轴、连接臂、焊缝跟踪传感器连接件和摆动器连接件,十字滑块横轴与十字滑块纵轴是分别包括步进电机与精密滚珠丝杠导轨,焊缝跟踪传感器安装在连接件的前端,摆动器连接件安装在连接臂的端部,摆动机构安装在摆动器连接件上,摆动机构前端夹持MIG/MAG焊枪,MIG/MAG焊枪夹持及姿态调整机构。所述传感系统包括激光跟踪传感器、环境监控传感器和熔池监控传感器,操作机构及环境监控传感器安装在爬行机构上,操作机构末端安装激光跟踪传感器、熔池监控传感器和MIG/MAG焊枪,机器人本体控制箱安装在爬行机构上,机器人控制箱与主控系统通过电缆相连;所述焊接系统MIG/MAG焊接电源、送丝机、保护气与机上部分的焊枪通过线缆相连。所述的机器人控制系统的工作方式为机器人本体先由人工遥控至焊接作业起始点位置附近,再由机器人自主识别跟踪焊缝实施焊接;机器人控制系统采用PCC或エ业PC作为主控系统,各功能板块为模块化设计,利用激光跟踪传感器的反馈控制机器人本体爬行机构和操作机构的运动;利用开关量控制焊接启动、停止等动作;具备远程焊接參数设置及在线调整功能;具备宏观焊接环境监控及微观焊接熔池监控功能;具备手操盒远程控制机器人系统功能。所述的机器人本体上设置有多自由度云台,实现宏观焊接环境的监控,采用熔池 监控传感器实现微观焊接熔池的监控,云台属于传感系统。所述的机器人焊接系统,在进行多层多道MIG/MAG焊接吋,机器人爬行机构运动速度范围为0-600mm/min,操作机构进行焊枪焊缝坡ロ对中的微调,底层焊接时保证背面成型;摆动器实现焊枪姿态调整,采用月牙式摆动,摆动范围为-60°到+60°。所述的机器人焊接系统,在进行厚板布道时,设计两端对称布道,前本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.ー种用于大厚板MIG/MAG多层多道焊接的自主移动式机器人系统,包括机器人本体、控制系统和MIG/MAG焊接系统,其特征在于 机器人本体包括爬行机构(6)和操作机构(I):所述爬行机构(6)包括采用驱动转向一体化磁轮的前轮模块(17)、采用永磁间隙吸附装置的后轮模块(20)、连接前后轮的车架(18)和安装在车架(18)上的电机驱动控制器(19);所述的操作机构(I)包括十字滑块和摆动机构(46 ),摆动机构(46 )前端夹持MIG/MAG焊枪(3 ),水平和垂直两个方向的自由度由两个丝杠导轨组合単元组合而成的十字滑块实现,摆动机构(46)采用步进电机搭配蜗轮蜗杆減速器(28); 控制系统包括传感系统、机器人本体控制箱(8)和机器人主控系统(15); MIG/MAG焊接系统包括MIG/MAG焊枪(3)、MIG/MAG焊接电源(12)、送丝机(11 )、保护气(13)和焊接冷却系统(14); 机器人本体、控制系统和MIG/MAG焊接系统三者通过线缆(9)连接。2.根据权利要求I所述的ー种用于大厚板MIG/MAG多层多道焊接的自主移动式机器人系统,其特征在于所述前轮模块(17)和后轮模块(20)分别安装在车架(18)两端,在后轮模块(20)处设置有后轮底盘(22),后轮底盘(22)上设置有永磁体(21); 前轮模块(17)为驱动转向一体化磁轮,包括永磁体(21)和车轮(23),前轮的永磁体(21)采用沿厚度方向磁化的环形永磁体(21);后轮模块(20)采用永磁间隙吸附方式,包括永磁间隙吸附装置和车轮(23),永磁间隙吸附装置包括环绕车轮(23)安装在后轮底盘(22)上的永磁体(21),永磁间隙吸附装置环绕后轮安装在底盘(22)上,所述永磁间隙吸附装置和导磁壁面间是非接触的,通过调节底盘(22)和导磁壁面之间的距离设定永磁吸附装置和导磁壁面间的气隙; 所述爬行机构(6)采用三轮结构,各车轮(23)均为驱动轮,依靠两后轮的差速及前轮的受控转向角实现在导磁壁面上的转向和直线运动。3.根据权利要求2所述的ー种用于大厚板MIG/MAG多层多道焊接的自主移动式机器人系统,其特征在于所述的操作机构(I)包括十字滑块横轴(41 )、十字滑块纵轴(42)、连接臂(43)、焊缝跟踪传感器(48)连接件(44)和摆动器连接件(45),十字滑块横轴(41)与十字滑块纵轴(42)是分别包括步进电机与精密滚珠丝杠导轨,焊缝跟踪传感器(48)安装在连接件的前端,摆动器连接件(45)安装在连接臂(43)的端部,摆动机构(46)安装在摆动器连接件(45)上,摆动机构(46)前端夹持MIG/MAG焊枪(3),MIG/MAG焊枪(3)夹持及姿态调整机构。4.根据权利要求3所述的ー种用于大厚板MIG/MAG多层多道焊接的自主移动式机器人系统,其特征在干所述传感系统包括激光跟踪传感器(4)、环境监控传感器和熔池监控传感器(2),操作机构(I)及环境监控传感器安装在爬行机构(6)上,操作机构(I)末端安装激光跟踪传感器(4 )、熔池监控传感器(2 )和MIG/MAG焊枪(3 ),机器人本体控制箱(8 )安装在爬行机构(6)上,机器人控制箱与主控系统通过电缆相连;所述焊接系统MIG/MAG焊接电源(12)、送丝机(11 )、保护气(13)与机上部分的焊枪通过线缆(9)相连。5.根据权利要求4所述的ー种用于大厚板MIG/MAG多层多道焊接的...

【专利技术属性】
技术研发人员:桂仲成董娜李永龙陈博翁肖唐杰姜周张帆贺骥徐立强吴建东
申请(专利权)人:中国东方电气集团有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1