用于钛矿石提选的耐火衬制造技术

技术编号:7260059 阅读:191 留言:0更新日期:2012-04-13 11:48
本公开涉及耐火材料,所述耐火材料耐抗钛矿石提选期间使熔炉、尤其是转底炉中耐火材料降解的腐蚀。具体地讲,本公开涉及用于钛矿石提选工艺的熔炉层状耐火衬,在所述工艺中形成富含氧化钛的熔融矿渣,所述耐火衬包含:(a)包含大比例氧化铝和小比例氧化锆的第一层;(b)包含熔融矿渣耐抗剂的第二层;其中所述第二层介于所述熔融矿渣和所述第一层之间。

【技术实现步骤摘要】
【国外来华专利技术】
本公开涉及用于钛矿石提选的熔炉层状耐火衬。更具体地讲,本公开涉及内衬熔炉的耐火体,所述耐火体包含大比例的氧化铝和小比例的氧化锆。
技术介绍
转底炉已被描述用于将包含氧化铁、二氧化钛和金属氧化物杂质的低级钛矿石如钛铁矿提选成包含高含量氧化钛的产品如钛渣和金属铁。然而,在转底方法中通过还原提选包含二氧化钛和金属氧化物杂质的低级矿石可能存在工艺难题。具体地讲,制得的富含钛的矿渣对于通常用于内衬熔炉的耐火材料可为高度腐蚀性的,造成内衬降解,这致使修复或替换耐火材料的生产停工时间增加。与其中矿渣的冷冻衬用作耐火材料与熔融矿渣之间的保护屏障的典型钛铁矿熔炼方法不同,转底方法中的熔融矿渣可与耐火材料直接接触,并且因此耐腐蚀性耐火材料为必不可少的。公开概述本公开涉及用于钛矿石提选工艺的熔炉层状耐火衬,在所述工艺中形成富含氧化钛并且富含氧化铁的熔融矿渣,所述耐火衬包含(a)包含大比例氧化铝和小比例氧化锆的第一层;(b)包含耐抗剂的第二层,所述耐抗剂为熔融矿渣与氧化铝和氧化锆的反应产物; 其中所述第二层介于熔融矿渣和所述第一层之间。所述第二层可在提选过程期间原位形成,或可通过向第一层表面施用包含二氧化钛源、碳源和粘合剂的糊剂以在其上形成涂层,将所述涂层熔融以致使所述涂层与第一层反应并且形成第二层来预先形成所述第二层。所述熔炉可为电弧炉或转底炉。所述第一层可包含氧化铝和氧化锆,其具有按所述第一层总重量计约90至约99 重量%的氧化铝,以及约1至约10重量%的氧化锆。更具体地讲,按所述第一层总重量计, 氧化铝在约97重量%至约98重量%范围内,并且按所述第一层总重量计,氧化锆在约1重量%至约2重量%范围内。所述层状耐火衬还可包含氧化钙和氧化镁、氧化钇、氧化铈、或它们的混合物。在另一方面,本公开涉及在用于钛矿石提选工艺的熔炉耐火体中形成耐抗剂的方法,所述方法包括(i)形成包含碳基材料和含钛矿石的附聚物,所述附聚物的碳含量足以在高温下将氧化铁还原成氧化亚铁并且形成由氧化钛和氧化铁组成的矿渣;(ii)将所述附聚物加入到活动底炉的碳床上,其中所述活动底炉包含耐火衬,所述耐火衬包含第一层,所述第一层包含大比例的氧化铝和小比例的氧化锆;(iii)将活动底炉中的附聚物加热至足以还原并且熔融所述附聚物的温度以制得富含氧化钛的熔融矿渣,所述熔融矿渣与耐火衬接触以制得包含耐抗剂的第二层,所述耐抗剂为矿渣、氧化铝和氧化锆的反应产物;其中所述第二层形成于矿渣和第一层之间。在又一方面,本公开涉及富含氧化钛的熔融矿渣的耐抗剂,所述耐抗剂包含含有大比例的氧化铝和小比例的氧化锆的耐火衬第一层与富含氧化钛的熔融矿渣的反应产物, 在富含氧化钛的熔融矿渣存在下,所述耐抗剂耐抗包括开裂在内的降解。所述耐抗剂可为矿渣中的氧化钛与第一层中的氧化铝和氧化锆的反应产物。在一个实施方案中,可将本公开理解为不包括任何不会实质上影响组合物或方法的基本和新型特征的要素或工序。此外,可将本公开理解为不包括任何本文未列出的要素或工序。附图简述附图说明图1为用于还原富含钛的矿石并且生产铁金属和高级氧化钛的转底炉的顶视图。图2为本公开方法的简化示意图。图3为比较实施例1中氧化镁基耐火材料的照片。图4为比较实施例2中氧化铝基耐火材料的照片。图5为比较实施例3中氧化铝基耐火材料的照片。图6为实施例4中氧化铝基耐火材料的照片。公开详述在一种广泛使用的钛矿石提选方法中,在熔炉中将包含氧化钛的矿石转变成包含更高浓度的氧化钛的矿渣,所述矿渣适用于制备二氧化钛颜料。本公开涉及内衬至少一部分熔炉的耐火体,更具体地讲,所述耐火体形成用于钛矿石提选工艺的层状耐火衬。关于该工艺,使包含氧化钛的矿石形成包含碳基材料和钛矿石的附聚物。将所述附聚物加入到熔炉中以转变成矿渣和其它反应产物。附聚物的碳含量足以在高温下将氧化铁还原成氧化亚铁并且形成包含氧化钛和氧化亚铁的熔融矿渣。可将所述附聚物加入到活动底炉的碳床上。描述了对富含钛的熔融矿渣腐蚀特性耐抗的耐火体。所述耐火体包含含有氧化铝-氧化锆的第一层。更具体地讲,所述耐火体包含大比例的氧化铝和小比例的氧化锆。氧化铝与氧化锆的比率可由下式表示XAl2O3 JlrO2其中χ在按所述耐火体总重量计约90至约99重量%范围内,并且其中y在按所述耐火体总重量计约1至约10重量%范围内。更具体地讲,X在按所述耐火体总重量计约95至约99重量%范围内,并且其中y在按所述耐火体总重量计约1至约5重量%范围内。甚至更具体地讲,按所述耐火体总重量计,χ为约97重量%至约98重量%并且y为约 1至约2重量%。所述耐火体可包含小比例的其它化合物,所述其它化合物不会破坏耐火体的耐腐蚀性,如一种或多种碱金属或碱土金属氧化物或元素周期表第IVB族元素的氧化物 (Sargent-Welch Scientific Company 1979)。这些化合物中的一些可增强耐火材料的稳定性,并且从而有助于其与矿渣接触时的性能。实例选自氧化钙、氧化镁、氧化钇和氧化铈以及它们的混合物。这些氧化物的总量按所述耐火体的总重量计可小于1重量%,更典型小于0. 5重量%,通常约0. 05重量%至约1重量%,甚至更典型在约0. 05重量%至约0. 5 重量%范围内。具体地讲,所述第一层可不含二氧化硅。所述耐火体还包含含有矿渣的耐抗剂的第二层。所述耐抗剂可抑制对与富含钛的熔融矿渣接触的耐火体的腐蚀,从而防止在耐火体中产生开裂。耐抗剂可为由钛矿石还原形成的熔融矿渣与耐火材料中氧化铝和氧化锆的反应产物。所述第二层还可包含熔融矿渣与第一层耐火材料组分的其它反应产物,以及任选的一种或多种第一层未反应的组分和未反应的矿渣。所述第二层可在矿石提选过程期间由熔融矿渣与第一层的反应形成。更具体地讲,第二层可在矿石提选过程期间由第一层组分与熔融矿渣的反应形成。甚至更具体地讲,第二层可在矿石提选过程期间由第一层中的氧化铝和氧化锆与熔融矿渣中钛矿石的还原产物的反应形成。作为另外一种选择,第二层可在预成形步骤中形成。通过通常在转底炉内向耐火材料内衬表面施用糊剂来实现第二层的预成形,所述糊剂由二氧化钛源,如钛铁矿、碳源如煤炭、以及适于制备二氧化钛源和碳源糊剂的粘合剂组成,所述粘合剂将与第一层粘合并且在其上形成涂层。粘合剂的量和类型将取决于工艺条件,但是将是耐火材料领域的技术人员显而易见的。然后将熔炉加热至足以将涂层熔融并且致使涂层与耐火材料反应形成第二层的温度。因此,第二层在提选之前形成并且可视为在预成形步骤中制得。因此,可通过第一层(更具体地讲为其组分)与预成形第二层组分在高温下(更具体地讲在实施矿石提选的温度下)反应,在预成形第二层中形成耐抗剂。耐火体可为砖块形式、瓷砖形式或大体上连续的层形式,更具体地讲为连续层形式。适用作耐火体的可商购获得的耐火材料为由Rath Refractories, Inc. (Milledgeville,GA)出售的Korrath C98Zr。C98& 耐火材料包含按所述耐火体的总重量计97. 7重量%的氧化铝、1. 8重量%的氧化锆、0. 2重量%的(氧化镁+氧化钙)、0. 1重量%的二氧化硅和0. 2重量%的碱金属。通常熔炉可为活动底炉,更典型为转底炉。然而,也可使用电弧炉。参照附图,并本文档来自技高网...

【技术保护点】

【技术特征摘要】
【国外来华专利技术】...

【专利技术属性】
技术研发人员:J·J·巴恩斯D·阮P·希尔J·S·施克林
申请(专利权)人:纳幕尔杜邦公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术