激光冲击强化测量系统以及方法技术方案

技术编号:7077617 阅读:253 留言:0更新日期:2012-04-11 18:40
一种监测材料的激光冲击强化(100)的方法包括在材料上形成烧蚀层(106),使激光射束对准烧蚀层以产生在材料中的声波,将材料中的声波转换成材料外部的热能并且测量该热能。

【技术实现步骤摘要】

技术介绍
本文公开的主题涉及处理金属以及,特别地涉及监测激光金属处理。激光强化(laser peening)或者激光冲击强化(LSP)是通过使用强有力的激光将有益的残余压应力引入材料(通常是金属)的过程。如本文所使用的,被加工的材料应被称为“被处理材料”。烧蚀涂层(通常黑带或者涂料)被施加至被处理材料以吸收来自激光的能量。来自激光的短能量脉冲然后被集中以使烧蚀涂层爆炸,从而产生冲击波。该过程可在多个位置中重复。半透明层(通常由水组成)被要求在涂层上且用作夯实物(tamp), 引导冲击波进入被处理材料。压电传感器通常被用于LSP加工的实时(即时)监测。该压电传感器将由LSP引起的应力(声)波转换成与波的强度成比例的电信号。该电信号然后可被用于监测LSP过程。然而压电传感器经常被破坏,因为它与被处理材料处于直接接触。这些仪表的一次使用破坏对于无论何处需要多个激光脉冲时要求多个仪表的使用。
技术实现思路
根据本专利技术的一个方面,提供了用于测量在LSP过程期间提供给被处理材料的能量的激光冲击强化(LSP)测量装置。该实施例的装置包括能量转换器,其被配置成接收来自被处理材料的声能并且将该声能转换成热能。该实施例的装置还包括与能量转换器耦合的能量测量装置,其基于与声能成比例的热能产生电输出。根据本专利技术的另一方面,提供了监测材料的激光冲击强化的方法。该方法包括在材料上形成烧蚀层,使激光射束对准烧蚀层以产生在材料中的声波,将材料中的声波转换成材料外部的热能并且测量该热能。根据本专利技术的又另一方面,提供了涡轮。该实施例的涡轮由过程制备,该过程包含在涡轮的叶片上形成烧蚀层;将激光射束对准烧蚀层以产生在材料中的声波;将材料中的声波转换成材料外部的热能;并且测量该热能。这些以及其他优点和特征从接下来的说明并结合了附图考虑将变得更清楚明了。 附图说明本主题(其被认为是本专利技术),具体地被指出并且清楚地在本说明书的结尾处的权利要求书中被请求保护。本专利技术的前述的以及其他的特征、以及优点从接下来的详细说明并结合附图考虑是清楚明了的,其中图1示出根据本专利技术的一个实施例的LSP系统;以及图2示出根据本专利技术的一个实施例的能量转换器的详细示例。该详细的说明通过参照附图的示例的方式解释了本专利技术的实施例,连同优点以及特征。具体实施方式如以上所述,在LSP加工中利用压电传感器要求多个传感器的使用,因为该传感器由一次使用能被破坏。另外,通过直接测量声波来监测LSP过程由于所产生的高的声水平而导致操作者的不适。确实,某些LSP过程引起范围从100到140dB的声水平。本专利技术的实施例可将声波转换成能量的另一形式以减少关联于LSP加工的声水平。另外,到另一形式的波的转换可增加被用于监测LSP过程的传感器的寿命。本专利技术的实施例可允许在联机LSP监测中使用的传感器被再使用,因为它们未与被加工的材料直接接触。在一个实施例中,这可通过磁场以及导电媒介的使用通过从声到热修改所测量的能量来完成。特定地,声波由具有与被处理材料相同的或者类似的声阻抗的声耦合器被传输离开被处理材料。该声波然后被转换成热。该转换可例如在导电媒介中发生。在一个实施例中,产生磁场的线圈可围绕该媒介。导电媒介以及线圈可被包封在由具有与被处理材料不同声阻抗的材料制成的壳体或者容器内以便阻止由于到外部环境的传输的声能损失。在一个实施例中,在容器内的媒介的温度上升对接触容器的导热板加热。热板的最终温度增加由传感器转换成电压。在备选的实施例中,导热板可被省略并且在媒介中的温度变化可使用本领域内已知的技术直接测量。例如,温度变化可使用顶检测器或者辐射计来测量。图1示出根据本专利技术的一个实施例的LSP系统100。LSP系统100包括激光器102 以及被处理材料104。在一个实施例中,被处理材料104是金属。在具体实施例中,被处理材料可以是形成涡轮叶片的金属。相应地,系统100可被用于制造涡轮。当然,系统100也可被用于其他背景中。被处理材料104可包括贴附于第一侧105的烧蚀层106。烧蚀层106可由黑带或者涂料形成并且被施加以便吸收由激光器102给予的能量。在第二侧107上被处理材料 104可包括与其紧密接触的声耦合器108。声耦合器108可具有与被处理材料104相同或者大致相同的声阻抗。在运行中,激光器102被对准烧蚀材料106。短能量脉冲然后被集中以使烧蚀材料 106爆炸,从而产生冲击波110。冲击波110如果被允许在被处理材料104内反射则可具有有害的效果。反射波由参考数字112所指示。反射波112由于它们的张力本性而能使裂纹扩展并且减少被处理材料104的寿命。已经发现,以与被处理材料104紧密接触的方式放置声耦合器108可减收或者消除反射波112。特定地,声耦合器108的使用将冲击波从被处理材料104传输出去。从被处理材料104传输出去的波可被用于LSP过程的联机监测。本专利技术的一个实施例包括与声耦合器108耦合的能量转换器114。能量转换器114 可将声冲击波110转换成能量的另一形式。在一个实施例中,能量转换器114将声波转换成热能。能量测量装置116可测量由能量转换器114转换的能量输出。在一个实施例中, 能量测量装置116可包括导热板,其与能量转换器114接触。热板的最终温度增加由形成能量测量装置116的部分的传感器转换成电信号(电流或者电压)。这样的能量测量装置 116 (LSP传感器)可被使用不止一次,因为它未如现有技术那样通过与冲击波的直接接触而被破坏。在备选的实施例中,能量测量装置116可直接测量在导电材料中的温度变化。例如,作为顶检测器或者辐射计被实现的能量测量装置116可直接测量温度变化。图2示出根据本专利技术的一个实施例的能量转换器114的更详细的示例。能量转换器114在声耦合器108与能量测量装置116之间耦合。能量转换器114在一个实施例中将声能(波)转换成热能。声耦合器108可包括柱塞202。柱塞202将冲击波110对准能量转换器114并且将冲击波110传输至能量转换器114。特定地,柱塞202将冲击波110对准能量转换器114 的活塞204并且将冲击波110传输至能量转换器114的活塞204。当使得电导体在磁场中移动时,则产生电动势。该电导体能被任何导电媒介(例如流体或者气体)所替换,该导电媒介是电的良好导体。能通过电离或者通过本领域内已知的其他手段使该媒介导电。在一个实施例中,能量转换器114包括置于容器208内的导电媒介206。导电媒介 206可通过被传输至活塞204的冲击波110而处于运动。更详细地,在LSP期间产生的冲击波110在穿过被处理材料以及声耦合器108之后可引起导电媒介206中的运动。如果声耦合器108由与被处理材料相同声阻抗的材料形成,传输比则可被增加。形成声耦合器108使得它包括柱塞202,柱塞202可集中冲击波。在一个实施例中,声耦合器108—般(以及特定地柱塞20 ,可与活塞204耦合。 在一个实施例中,活塞204可由与声耦合器108声学上类似的材料制成。来自活塞204的声波然后穿过在容器208内的导电媒介206。容器208可由具有与被处理材料104相异的声阻抗的材料制成,使得在容器208内不存在由于到外部的波的传输的声能损失。在一个实施例中,容器2本文档来自技高网...

【技术保护点】
1.一种用于测量在LSP过程期间提供给被处理材料的能量的激光冲击强化LSP(100)测量装置,所述装置包括:能量转换器(114),其被配置成接收来自所述被处理材料(104)的声能并且将所述声能转换成热能;以及与所述能量转换器耦合的能量测量装置(116),其基于与所述声能成比例的热能产生电输出。

【技术特征摘要】
...

【专利技术属性】
技术研发人员:M·马泰G·德拉费拉
申请(专利权)人:通用电气公司
类型:发明
国别省市:US

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1