当前位置: 首页 > 专利查询>东南大学专利>正文

空间坐标监测的识别受损索松弛索支座角位移的递进方法技术

技术编号:6984226 阅读:220 留言:0更新日期:2012-04-11 18:40
空间坐标监测的识别受损索松弛索支座角位移的递进方法,考虑到了被监测量的当前数值向量同被监测量的初始数值向量、单位损伤被监测量变化矩阵和当前名义健康状态向量间的线性关系是近似的,为克服此缺陷,本发明专利技术给出了使用线性关系分段逼近非线性关系的方法,将大区间分割成连续的一个个小区间,在每一个小区间内上述线性关系都是足够准确的,在每一个小区间内可以利用多目标优化算法等合适的算法快速识别出支座角位移、受损索和松弛索。

【技术实现步骤摘要】

斜拉桥、悬索桥、桁架结构等结构有一个共同点,就是它们有许多承受拉伸载荷的部件,如斜拉索、主缆、吊索、拉杆等等,该类结构的共同点是以索、缆或仅承受拉伸载荷的杆件为支承部件,为方便起见本专利技术将该类结构表述为“索结构”。在索结构的服役过程中, 索结构的支承系统(指所有承载索、及所有起支承作用的仅承受拉伸载荷的杆件,为方便起见,本专利将该类结构的全部支承部件统一称为“索系统”,但实际上索系统不仅仅指支承索,也包括仅承受拉伸载荷的杆件)会受损,同时索结构的支座也可能出现角位移(例如支座绕坐标轴x、Y、z的转动,实际上就是支座绕坐标轴Χ、Υ、Ζ 的角位移),这些变化对索结构的安全是一种威胁,本专利技术基于结构健康监测技术,基于空间坐标监测、采用递进式方法来识别支座角位移、识别索结构的索系统中的受损索、识别需调整索力的支承索,并给出具体的索长调整量,属工程结构健康监测领域。
技术介绍
支座角位移对索结构安全是一项重大威胁,同样的,索系统通常是索结构的关键组成部分,它的失效常常带来整个结构的失效,基于结构健康监测技术来识别支座角位移和索结构的索系统中的受损索是一种极具潜力的方法。当支座出现角位移时、或索系统的健康状态发生变化时、或者两种情况同时发生时,会引起结构的可测量参数的变化,例如会引起索力的变化,会影响索结构的变形或应变,会影响索结构的形状或空间坐标,会引起过索结构的每一点的任意假想直线的角度坐标的变化(例如结构表面任意一点的切平面中的任意一根过该点的直线的角度坐标的变化,或者结构表面任意一点的法线的角度坐标的变化),所有的这些变化都包含了索系统的健康状态信息,实际上这些可测量参数的变化包含了索系统的健康状态信息、包含了支座角位移信息,也就是说可以利用结构的可测量参数来识别支座角位移、受损索和松弛索。为了能对索结构的索系统的健康状态和支座角位移有可靠的监测和判断,必须有一个能够合理有效的建立索结构的可测量参数的变化同支座角位移和索系统中所有索的健康状况间的关系的方法,基于该方法建立的健康监测系统可以给出更可信的支座角位移评估和索系统的健康评估。
技术实现思路
技术问题本专利技术公开了一种基于空间坐标监测的、采用递进式方法的、能够合理有效地识别支座角位移、受损索和松弛索的健康监测方法。技术方案设索的数量和支座角位移分量的数量之和为见为叙述方便起见,本专利技术统一称被评估的索和支座角位移为“被评估对象”,给被评估对象连续编号,本专利技术用用变量J·表示这一编号,J‘=l,2,3,···,见因此可以说有#个被评估对象。依据支承索的索力变化的原因,可将支承索的索力变化分为三种情况一是支承索受到了损伤,例如支承索出现了局部裂纹和锈蚀等等;二是支承索并无损伤,但索力也发生了变化,出现这种变化的主要原因之一是支承索自由状态(此时索张力也称索力为0)下的索长度(称为自由长度,本专利技术专指支承索两支承端点间的那段索的自由长度)发生了变化;三是支承索并无损伤,但索结构支座有了角位移,也会引起结构内力的变化,当然也就会引起索力的变化。为了方便,本专利技术将自由长度发生变化的支承索统称为松弛索。本专利技术由两大部分组成。分别是一、建立被评估对象健康监测系统所需的知识库和参量的方法、基于知识库(含参量)和实测索结构的应变(或变形)的被评估对象健康状态评估方法;二、健康监测系统的软件和硬件部分。本专利技术的第一部分建立用于被评估对象健康监测的知识库和参量的方法。可按如下步骤依次循环往复地、递进式进行第一步每一次循环开始时,首先需要建立或已建立本次循环开始时的被评估对象初始健康状态向量i//(i=l,2,3,…)、建立索结构的初始力学计算基准模型Α。(例如有限元基准模型,在本专利技术中A。是不变的)、建立索结构的力学计算基准模型Ai (例如有限元基准模型,i=l,2,3,…)。字母i除了明显地表示步骤编号的地方外,在本专利技术中字母i仅表示循环次数,即第i次循环。第i次循环开始时需要的索结构“初始健康状态向量dj” (如式(1)所示),用dj 表示第i次循环开始时索结构(用力学计算基准模型Ai表示)的索结构的初始健康状态。权利要求1. 一种,其特征在于所述方法包括a.为叙述方便起见,统一称被评估的支承索和支座角位移分量为被评估对象,设被评估的支承索的数量和支座角位移分量的数量之和为见即被评估对象的数量为# ;确定被评估对象的编号规则,按此规则将索结构中所有的被评估对象编号,该编号在后续步骤中将用于生成向量和矩阵;用变量J·表示这一编号,J‘=l,2,3,···,N-,b.确定指定的将被监测空间坐标的被测量点,给所有指定点编号;确定过每一测量点的将被监测的空间坐标分量,给所有被测量空间坐标分量编号;上述编号在后续步骤中将用于生成向量和矩阵;“结构的全部被监测的空间坐标数据”由上述所有被测量空间坐标分量组成;为方便起见,将“结构的被监测的空间坐标数据”称为“被监测量”;测量点的数量不得小于索的数量;所有被测量空间坐标分量的数量之和不得小于c.利用被评估对象的无损检测数据等能够表达被评估对象的健康状态的数据建立被评估对象初始健康状态向量;如果没有被评估对象的无损检测数据时,向量^/^的各元素数值取O ;向量的元素的编号规则和被评估对象的编号规则相同;本专利技术用i表示循环次数,i=l, 2,3,……;这里是第一次循环,i取1,即这里建立的初始健康状态向量^ij可以具体化为cf0 ;d.在建立初始健康状态向量的同时,直接测量计算得到索结构的所有被监测量的初始数值,组成被监测量的初始数值向量;这里是第一次循环,i取1,即这里建立的被监测量的初始数值向量可以具体化为C10 ;在实测得到被监测量初始数值向量的同时, 实测得到索结构的初始几何数据和初始索结构支座坐标数据;直接测量计算得到所有支承索的初始索力,组成初始索力向量^ ;同时,依据结构设计数据、竣工数据得到所有支承索的初始自由长度,组成初始自由长度向量厶;向量/^;和向量厶是不变的;同时,实测或根据结构设计、竣工资料得到所有索的弹性模量、密度、初始横截面面积;e.根据索结构的设计图、竣工图和索结构的实测数据、索的无损检测数据和初始索结构支座坐标数据建立索结构的力学计算基准模型Ai ;这里是第一次循环,i取1,即这里建立的索结构的力学计算基准模型Ai可以具体化为A1 ; f.在力学计算基准模型Ai的基础上进行若干次力学计算,通过计算获得“单位损伤被监测量数值变化矩阵」Cf,,和“名义单位损伤向量D^ ;g.实测得到索结构的所有指定被监测量的当前实测数值,组成“被监测量的当前数值向量C”;给本步及本步之前出现的所有向量的元素编号时,应使用同一编号规则,这样可以保证本步及本步之前出现的各向量的、编号相同的元素,表示同一被监测量的、对应于该元素所属向量所定义的相关信息;实测得到索结构的所有支承索的当前索力,组成当前索力向量户;实测计算得到所有支承索的两个支承端点的空间坐标,两个支承端点的空间坐标在水平方向分量的差就是两个支承端点水平距离;h.定义当前名义健康状态向量和当前实际健康状态向量Ji,两个损伤向量的元素个数等于被评估对象的数量,当前名义健康状态向量的元素数值代表对应被评估对象的当前名义损伤程度或支座角位移,当前实际健康状态向量本文档来自技高网
...

【技术保护点】
1.一种空间坐标监测的识别受损索松弛索支座角位移的递进方法,其特征在于所述方法包括:a. 为叙述方便起见,统一称被评估的支承索和支座角位移分量为被评估对象,设被评估的支承索的数量和支座角位移分量的数量之和为N,即被评估对象的数量为N;确定被评估对象的编号规则,按此规则将索结构中所有的被评估对象编号,该编号在后续步骤中将用于生成向量和矩阵;用变量j表示这一编号,j=1,2,3,…, N;b. 确定指定的将被监测空间坐标的被测量点,给所有指定点编号;确定过每一测量点的将被监测的空间坐标分量,给所有被测量空间坐标分量编号;上述编号在后续步骤中将用于生成向量和矩阵;“结构的全部被监测的空间坐标数据”由上述所有被测量空间坐标分量组成;为方便起见,将“结构的被监测的空间坐标数据”称为“被监测量”;测量点的数量不得小于索的数量;所有被测量空间坐标分量的数量之和不得小于N;c. 利用被评估对象的无损检测数据等能够表达被评估对象的健康状态的数据建立被评估对象初始健康状态向量dio;如果没有被评估对象的无损检测数据时,向量dio的各元素数值取0;向量dio的元素的编号规则和被评估对象的编号规则相同;本专利技术用i表示循环次数,i=1, 2, 3,……;这里是第一次循环,i取1,即这里建立的初始健康状态向量dio可以具体化为d1o;d. 在建立初始健康状态向量d1o的同时,直接测量计算得到索结构的所有被监测量的初始数值,组成被监测量的初始数值向量Cio;这里是第一次循环,i取1,即这里建立的被监测量的初始数值向量Cio可以具体化为C1o;在实测得到被监测量初始数值向量C1o的同时,实测得到索结构的初始几何数据和初始索结构支座坐标数据;直接测量计算得到所有支承索的初始索力,组成初始索力向量Fo;同时,依据结构设计数据、竣工数据得到所有支承索的初始自由长度,组成初始自由长度向量lo;向量Fo和向量lo是不变的;同时,实测或根据结构设计、竣工资料得到所有索的弹性模量、密度、初始横截面面积;e. 根据索结构的设计图、竣工图和索结构的实测数据、索的无损检测数据和初始索结构支座坐标数据建立索结构的力学计算基准模型Ai;这里是第一次循环,i取1,即这里建立的索结构的力学计算基准模型Ai可以具体化为A1;f. 在力学计算基准模型Ai的基础上进行若干次力学计算,通过计算获得“单位损伤被监测量数值变化矩阵ΔCi”和“名义单位损伤向量Diu”;g. 实测得到索结构的所有指定被监测量的当前实测数值,组成“被监测量的当前数值向量Ci”;给本步及本步之前出现的所有向量的元素编号时,应使用同一编号规则,这样可以保证本步及本步之前出现的各向量的、编号相同的元素,表示同一被监测量的、对应于该元素所属向量所定义的相关信息;实测得到索结构的所有支承索的当前索力,组成当前索力向量Fi;实测计算得到所有支承索的两个支承端点的空间坐标,两个支承端点的空间坐标在水平方向分量的差就是两个支承端点水平距离;h. 定义当前名义健康状态向量dic和当前实际健康状态向量d i,两个损伤向量的元素个数等于被评估对象的数量,当前名义健康状态向量dic的元素数值代表对应被评估对象的当前名义损伤程度或支座角位移,当前实际健康状态向量d i的元素数值代表对应被评估对象的当前实际损伤程度或支座角位移,两个损伤向量的元素的元素个数等于被评估对象的数量,两个损伤向量的元素和被评估对象之间是一一对应关系,两个损伤向量的元素的编号规则和被评估对象的编号规则相同;i. 依据“被监测量的当前数值向量Ci”同“被监测量的初始数值向量Cio”、“单位损伤被监测量数值变化矩阵ΔCi”和“当前名义健康状态向量dic”间存在的近似线性关系,该近似线性关系可表达为式1,式1中除dic外的其它量均为已知,求解式1就可以算出当前名义健康状态向量dic;                                式1j. 利用式2表达的当前实际健康状态向量di同初始损伤向量dio和当前名义健康状态向量dic的元素间的关系,计算得到当前实际健康状态向量d i的所有元素;                             式2式2中j=1,2,3,……,N;当前实际健康状态向量d i的元素数值代表对应被评估对象的实际损伤程度或实际支座角位移,根据当前实际健康状态向量di就能确定有哪些索受损及其损伤程度,就能确定实际支座角位移;若当前实际健康状态向量的某一元素对应于是索系统中的一根索,且其数值为0,表示该元素所对应的索是完好的,没有损伤或松弛的的,若其数值为100%,则表示该元素所对应的索已经完全丧失承载能力,若其数值介于0和100%之间,则表示该索丧失了相应比例的承载能力;如果当前实际健康状态向量的某一元素对应于一个支座的一个角位移分量,那么...

【技术特征摘要】

【专利技术属性】
技术研发人员:韩玉林关庆港
申请(专利权)人:东南大学
类型:发明
国别省市:84

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1