一种列车牵引系统制动电阻异常监测方法及装置制造方法及图纸

技术编号:39409331 阅读:17 留言:0更新日期:2023-11-19 16:01
本发明专利技术属于列车牵引系统技术领域,涉及一种列车牵引系统制动电阻异常监测方法及装置

【技术实现步骤摘要】
一种列车牵引系统制动电阻异常监测方法及装置


[0001]本专利技术属于列车牵引系统
,具体涉及一种列车牵引系统制动电阻异常监测方法及装置


技术介绍

[0002]地铁车辆在下坡或者其它需要减速或停车的场合,车上的电动机停止从电网获取电能,电动机成为发电机,在发电的过程中电机会缠上反力矩促使车辆减速,产生的电能在电网不能吸收的情况下由制动电阻转变为热能耗散

地铁车辆牵引变流器主要由整流器

充放电单元

滤波电抗器

中间支撑电容

逆变单元

斩波单元

制动电阻及控制单元等构成,制动电阻在制动过程中会产生大量的热量,通常会设置风机进行辅助散热,但若热量不能及时有效地散发到大气中去,热量将聚集在制动电阻内部,势必会导致制动电阻温度上升,严重的话会导致制动电阻元件被烧毁,因此有必要对制动电阻进行状态监测,以确保制动电阻安全稳定工作

[0003]目前,针对列车制动电阻异常监测的手段主要有以下两种:
[0004]第一种为依靠温度传感器,通过在制动电阻周围部署温度传感器采集制动电阻的温度,将采集的温度同设定的温度阈值进行比较,来对制动电阻的温度进行异常监测

如专利
CN112721902B
,通过采集制动电阻元件的温度信号,同时监测列车制动电阻的送风入口或者出口的风道口的空气参数信息,综合判断制动电阻的运行情况;但这种方法需要增加额外的温度传感器,硬件成本较高,此外温度传感器工作的环境比较恶劣,温度高

电压大,增加了传感器的故障几率,影响监测的准确度

[0005]第二种就是不加温度传感器,通过已有的列车运行参数,转化为制动电阻的特征指标,来完成制动电阻的监测

这些特征指标主要有制动电阻温度和制动电阻阻值两种

如专利
CN110949359B
,首先得到制动电阻投入工作后的积累热量值,然后计算得到温升值,将温升值与初始温度相加,再与设定的温度阈值进行比较,实现对制动电阻的温度异常监测;但这种方法通常仅适用于电路本身故障而引起的温度升高,若制动电阻箱的某些硬件设备如散热风机故障导致电阻温度升高时,该方法就不适用了

另外,如专利
CN106443241B
,通过实时获取目标牵引系统制动过程中直流侧回馈功率

中间支撑电容存储的制动能量的功率,将制动产生的总功率折算至直流侧得到折算总功率,进而计算制动电阻的实时消耗功率,最后获取制动电阻的电压值,计算制动电阻阻值,与设定的阈值进行比较,来判断制动电阻的状态;但这种方法通常设置的阈值比较大且恒定,往往不区分工况而包含整个过程,在某些情况下阻值可能不需要达到阈值就会故障,而当达到阈值报警时,制动电阻的健康状况往往并不乐观

[0006]由上述可知,仅仅依靠制动电阻单一的状态参数,监测精度难免会受到周围环境和工况变化带来的干扰而下降,不能准确识别制动电阻异常情况,因而有必要开发一种更加精细化的制动电阻异常监测方法


技术实现思路

[0007]针对相关技术中存在的不足之处,本专利技术提供一种列车牵引系统制动电阻异常监测方法及装置,旨在解决目前仅依靠单一状态参数不能准确识别制动电阻异常情况的问题,提高制动电阻异常监测的准确率

[0008]本专利技术提供一种列车牵引系统制动电阻异常监测方法,包括以下步骤:
[0009]构建制动电阻状态正常
R/T
曲线带,在列车模拟运行时进行,具体包括:
[0010]获取制动电阻阻值
R
i
;获取制动电阻的温升曲面和散热曲线以得到制动电阻热阻模型,进而预测列车模拟运行时与
R
i
对应时刻下的制动电阻温度
T
i
,以得到同一时刻下的制动电阻状态参数坐标点
(R
i
,T
i
)
;其中,
i
为样本维度,
i

1,2,

,m

[0011]汇总多个时刻下的制动电阻状态参数坐标点
(R
i
,T
i
)
以形成数据集,进而构建制动电阻状态正常
R/T
曲线带;
[0012]制动电阻状态实时监测,在列车实际运行时进行,具体包括:
[0013]获取制动电阻实时阻值
R
a
;基于制动电阻热阻模型,预测列车实际运行时与
R
a
对应时刻下的制动电阻实时温度
T
a
,以得到制动电阻实时状态参数坐标点
(R
a
,T
a
)

[0014]判断制动电阻实时状态参数坐标点
(R
a
,T
a
)
是否位于制动电阻状态正常
R/T
曲线带内;若是,则制动电阻状态正常;若否,则自动触发制动电阻的异常预警

[0015]在其中一些实施例中,获取制动电阻的温升曲面和散热曲线以得到制动电阻热阻模型,包括:
[0016]监测牵引变流器斩波回路的实时功率
P
;连续检测制动电阻处于制动工况时的温度
T
s1
,以获得制动电阻的温升曲面;连续检测制动电阻处于解除制动工况时的温度
T
s2
,以获得制动电阻的散热曲线;
[0017]建立式
(1)
所示的制动电阻温升阶段的热阻模型,建立式
(2)
所示的制动电阻散热阶段的热阻模型,结合温升曲面和散热曲线,拟合出制动电阻的热阻参数
F
和热容参数
C

[0018][0019][0020]式
(1)


(2)
中,
T
r
为环境温度,
T0为检测到的制动电阻在刚一解除制动工况时的初始温度,
e
为自然常数,
t
s1
为制动电阻处于制动工况时的检测时间长度,
t
s2
均为制动电阻处于解除制动工况时的检测时间长度;
[0021]根据式
(1)、

(2)
及拟合后的制动电阻的热阻参数
F
和热容参数
C
,得到式
(3)
所示离散化后的制动电阻热阻模型;
[0022]T
k+1

(T
k

T
r
...

【技术保护点】

【技术特征摘要】
1.
列车牵引系统制动电阻异常监测方法,其特征在于,包括以下步骤:构建制动电阻状态正常
R/T
曲线带,在列车模拟运行时进行,具体包括:获取制动电阻阻值
R
i
;获取制动电阻的温升曲面和散热曲线以得到制动电阻热阻模型,进而预测列车模拟运行时与
R
i
对应时刻下的制动电阻温度
T
i
,以得到同一时刻下的制动电阻状态参数坐标点
(R
i

T
i
)
;其中,
i
为样本维度,
i
=1,2,


m
;汇总多个时刻下的制动电阻状态参数坐标点
(R
i

T
i
)
以形成数据集,进而构建制动电阻状态正常
R/T
曲线带;制动电阻状态实时监测,在列车实际运行时进行,具体包括:获取制动电阻实时阻值
R
a
;基于所述制动电阻热阻模型,预测列车实际运行时与
R
a
对应时刻下的制动电阻实时温度
T
a
,以得到制动电阻实时状态参数坐标点
(R
a

T
a
)
;判断所述制动电阻实时状态参数坐标点
(R
a

T
a
)
是否位于所述制动电阻状态正常
R/T
曲线带内;若是,则制动电阻状态正常;若否,则自动触发制动电阻的异常预警
。2.
根据权利要求1所述的列车牵引系统制动电阻异常监测方法,其特征在于,所述获取制动电阻的温升曲面和散热曲线以得到制动电阻热阻模型,包括:监测牵引变流器斩波回路的实时功率
P
;连续检测制动电阻处于制动工况时的温度
T
s1
,以获得制动电阻的温升曲面;连续检测制动电阻处于解除制动工况时的温度
T
s2
,以获得制动电阻的散热曲线;建立式
(1)
所示的制动电阻温升阶段的热阻模型,建立式
(2)
所示的制动电阻散热阶段的热阻模型,结合所述温升曲面和散热曲线,拟合出制动电阻的热阻参数
F
和热容参数
C
;;式
(1)


(2)
中,
T
r
为环境温度,
T0为检测到的制动电阻在刚一解除制动工况时的初始温度,
e
为自然常数,
t
s1
为制动电阻处于制动工况时的检测时间长度,
t
s2
均为制动电阻处于解除制动工况时的检测时间长度;根据式
(1)、

(2)
及拟合后的制动电阻的热阻参数
F
和热容参数
C
,得到式
(3)
所示离散化后的制动电阻热阻模型;
T
k+1

(T
k

T
r
)
×
e
(

t/FC)
+P
×
F
×
(1

e
(

t/FC)
)+T
r (3)
;式
(3)
中,
T
r
为环境温度,
e
为自然常数,
t
为离散时间;
T
k

k
时刻的制动电阻温度;
T
k+1

k+1
时刻的制动电阻温度
。3.
根据权利要求2所述的列车牵引系统制动电阻异常监测方法,其特征在于,得到式
(3)
所示的离散化后的制动电阻热阻模型后,进行制动电阻热阻模型的验证,包括:利用式
(3)
所示的离散化后的制动电阻热阻模型,计算列车模拟运行时预设时间段内的制动电阻预测温度;同时,连续检测该预设时间段内的制动电阻实测温度;对比该预设时间段内的制动电阻预测温度与制动电阻实测温度;若二者的温度差值不大于预设温度误差
Δ
T
,则制动电阻热阻模型的验证合格;若二者的温度差值大于预设温度误差
Δ
T
,则制动电阻热阻模型的验证不合格,重新获取制动电阻的温升曲面和散热曲线以重新得到制动电阻热阻模型
。4.
根据权利要求1所述的列车牵引系统制动电阻异常监测方法,其特征在于,所述获取
制动电阻阻值
R
i
,包括:监测中间支撑电容两端电压
U
i
;监测牵引变流器斩波回路的斩波电流,并对其进行包络分析以得到斩波电流上包络线,进而获得斩波电流
I
i
;根据式
(4)
计算制动电阻阻值
R
i

R
i

U
i
/I
i
ꢀꢀꢀ
(4)。5.
根据权利要求1所述的列车牵引系统制动电阻异常监测方法,其特征在于,所述构建制动电阻状态正常
R/T
曲线带,还包括:利用制动电阻状态参数坐标点
(R
i

T
i
)
数据集,拟合出制动电阻状态正常
R/T
曲线,包括:建立基于制动电阻阻值
R
i
的函数方程,表示为式
(5)
;其中,
n
为多项式阶数,
θ0为常数项,
θ
j
为多项式的各项系数,
j
=1,2,


n

f(R
i
)

θ0+
θ1R
i
+
θ2R
i2
+

+<...

【专利技术属性】
技术研发人员:曹虎王梦谦赵立伟王磊
申请(专利权)人:中车青岛四方车辆研究所有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1