一种大体积混凝土体温控抗裂方法技术

技术编号:39285931 阅读:10 留言:0更新日期:2023-11-07 10:57
本发明专利技术提供了一种大体积混凝土体温控抗裂方法,在混凝土的浇筑过程中,使混凝土进行分层浇筑,通过控制混凝土的入模温度、时变最大温度、表面温度和分层温度,以控制混凝土中心和表面之间,新混凝土和老混凝土之间以及混凝土表面温度和气温之间的差值,以使混凝土分层温度在梯度范围内,包括:通过进场检验的方式控制混凝土的入模温度;通过检测混凝土中心轴位置的时变最大温度;通过对时变最大温度校验理论计算,获得混凝土施工现场水冷速率控制温度;通过在混凝土内设置监测点,监测混凝土的分层温度和表面温度,分层温度和表面温度用于检测混凝土表面和分层应力。于检测混凝土表面和分层应力。于检测混凝土表面和分层应力。

【技术实现步骤摘要】
一种大体积混凝土体温控抗裂方法


[0001]本专利技术涉及桥梁修筑领域,具体涉及一种大体积混凝土体温控抗裂方法。

技术介绍

[0002]混凝土作为现代工业的产物已经遍布在人们的生活当中,其中的高层楼房、水利大坝、大型桥梁等大型混凝土,经常会产生裂缝,产生裂缝的原因是因为它们的体积大水泥用量大,水泥的硬化释放大量的热量,混凝土的内部温度过高,表面热量易散发,造成内外温差过大,混凝土内部产生的压应力和表面产生的拉应力超过极限抗拉强度,表面就会产生裂缝;在寒冷的冬季气温过低,吸水饱和的混凝土中出现冰冻,使混凝土中的膨胀力加大,并导致出现裂缝。
[0003]大坝或桥梁的混凝土施工期裂缝问题是一直未能得到有效解决的难题,其主要原因除了施工阶段复杂的施工条件因素影响外,施工过程中很多温控措施的实施难免受到人为因素的干扰。很多出现裂缝的混凝土坝是由于内部温度未能真正的按照设计要求进行冷却或者进行表面保护,使得施工期混凝土的应力超标从而出现裂缝。施工期温度应力过大是混凝土坝开裂的重要原因之一,拱坝混凝土的温度问题主要应从控制温度和改善约束两方面来解决。目前拱坝的温控施工中主要控制三大温差:基础温差、内外温差和上下层温差。基础温差通过最高温度控制,内外温差通过表面保温和内部温度控制,上下层温差则通过混凝土最高温度及合理的冷却过程控制。控制温差旨在减少混凝土浇筑过程中的温度梯度,从而减少因温度梯度引起的温度应力。
[0004]目前大体积混凝土温控施工遵循“小温差、早冷却、慢冷却”的指导思想,时间上采用一期(初期)冷却、中期冷却、二期(后期)冷却等措施控制混凝土温度,空间上通过设置拟灌区、同冷区、过渡区、盖重区的分区冷却过程控制空间的温度。
[0005]但目前提出的温控曲线模型主要是基于传统的“三期九段控降结合”的温控策略而制定的,这种策略的设定是基于人工通水控制时期人为设定,实际应用中常造成了混凝土最高温度控制达标率不高,温控过程不连续、温度梯度较大,温控措施优化不力等不足,增加了混凝土的开裂风险。

技术实现思路

[0006]基于此,本专利技术提出了一种大体积混凝土体温控抗裂方法,解决了最高温度控制达标率不高,温控过程不连续、温度梯度较大,温控措施优化不力等不足。
[0007]本专利技术提供了一种大体积混凝土体温控抗裂方法,在所述混凝土的浇筑过程中,使所述混凝土进行分层浇筑,通过控制混凝土的入模温度、时变最大温度、表面温度和分层温度,以控制混凝土中心和表面之间,新混凝土和老混凝土之间以及混凝土表面温度和气温之间的差值,以使混凝土分层温度在梯度范围内,包括:
[0008]通过进场检验的方式控制所述混凝土的所述入模温度;
[0009]通过检测所述混凝土中心轴位置的时变最大温度;
[0010]通过对所述时变最大温度校验理论计算,获得所述混凝土施工现场水冷速率控制温度;
[0011]通过在所述混凝土内设置监测点,监测所述混凝土的所述分层温度和所述表面温度,所述分层温度和所述表面温度用于检测所述混凝土表面和分层应力。
[0012]进一步的,所述通过在所述混凝土内设置监测点,监测所述混凝土的所述分层温度和所述表面温度,所述分层温度和所述表面温度用于检测所述混凝土表面和分层应力,包括:
[0013]在所述混凝土的底模板、顶面或所述混凝土之间的表面设置底面测点,用于测定所述底模板的温度场;
[0014]在距离所述混凝土底面3m的高度设置表面监测点,用于检测所述混凝土的梁端面以及腹板外表面的温度梯度;
[0015]在所述混凝土浇筑过程种的其他层面设置校验监测点,用于检测所述混凝土内部最高温以及校验表面温度。
[0016]进一步的,在所述混凝土分层浇筑的过程中在所述混凝土周边设置冷却管。
[0017]进一步的,对所述冷却管的入口水温进行监测,用于通过调整所述入口水温控制所述混凝土的最大升温值及降温速率。
[0018]进一步的,对所述冷却管的出口水温进行监测,用于通过冷却水的温升值调节冷却水输入速率或入口水温。
[0019]进一步的,所述冷却管在所述混凝土上分层布置,所述冷却管的密度按照在水平面上间隔1m,垂直高度方向上1.3~1.5m设置。
[0020]进一步的,每层的所述冷却管进行独立供水,每层的所述冷却管内的冷却水的供水方向交替供水。
[0021]进一步的,每层的所述冷却管内的冷却水流速不小于0.65m/s,水管流量不小于22.3L/min,所述冷却水在所述冷却管内形成紊流状态。
[0022]进一步的,还包括测试环境温度,并计算环境温度差,以根据所述温度差调节保温结构。
[0023]从上述技术方案可以看出,本专利技术提供的大体积混凝土体温控抗裂方法具有以下有益效果:
[0024]本专利技术提供的大体积混凝土体温控抗裂方法应用于大体积中、低热混凝土拱坝的施工中,可显著提高最高温控达标率,确保时空维度的温度梯度符合设计要求、动态可调,减少温度应力,降低大坝开裂风险。通过将升温期浇筑前和浇筑后动态联控提高了最高温度的达标率,通过连续的降温期确保时空温度梯度可调,同时确保了横缝的张开与接缝灌浆的进行。通过回升期对结束通水后混凝土温度的长期监测,确保了全生命周期温度数据的连续性,为温度回升规律及分析大坝混凝土长期性能积累了基础数据。
附图说明
[0025]图1为本专利技术实施例的控制关系图;
[0026]图2为本专利技术实施例的监测点分层设置的示意图;
[0027]图3为本专利技术实施例图2中布置1的水平方向上的监测点设置图;
[0028]图4为本专利技术实施例图2中布置2的水平方向上的监测点设置图;
[0029]图5为本专利技术实施例图2中布置3的水平方向上的监测点设置图;
[0030]图6为本专利技术实施例冷却管在垂直方向上分层设置的示意图;
[0031]图7为本专利技术实施例图6中水管1的水平方向上的设置图;
[0032]图8为本专利技术实施例图6中水管2的水平方向上的设置图;
[0033]图9为本专利技术实施例图6中水管3的水平方向上的设置图;
[0034]图10为本专利技术实施例图6中水管4的水平方向上的设置图;
[0035]图11为本专利技术实施例混凝土浇筑空间实体模型的水化热计算模型图;
[0036]图12为本专利技术实施例图11中模型内部温度变化曲线图。
具体实施方式
[0037]为使本专利技术的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本专利技术作进一步的详细说明。
[0038]目前大体积混凝土温控施工遵循“小温差、早冷却、慢冷却”的指导思想,时间上采用一期(初期)冷却、中期冷却、二期(后期)冷却等措施控制混凝土温度,空间上通过设置拟灌区、同冷区、过渡区、盖重区的分区冷却过程控制空间的温度。
[0039]但目前提出的温控曲线模型主要是基于传统的“三期九段控降结合”的温控策略而制定的,这种策略的设定是基于人工通水本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种大体积混凝土体温控抗裂方法,其特征在于,在所述混凝土的浇筑过程中,使所述混凝土进行分层浇筑,通过控制混凝土的入模温度、时变最大温度、表面温度和分层温度,以控制混凝土中心和表面之间,新混凝土和老混凝土之间以及混凝土表面温度和气温之间的差值,以使混凝土分层温度在梯度范围内,包括:通过进场检验的方式控制所述混凝土的所述入模温度;通过检测所述混凝土中心轴位置的时变最大温度;通过对所述时变最大温度校验理论计算,获得所述混凝土施工现场水冷速率控制温度;通过在所述混凝土内设置监测点,监测所述混凝土的所述分层温度和所述表面温度,所述分层温度和所述表面温度用于检测所述混凝土表面和分层应力。2.根据权利要求1所述的方法,其特征在于,所述通过在所述混凝土内设置监测点,监测所述混凝土的所述分层温度和所述表面温度,所述分层温度和所述表面温度用于检测所述混凝土表面和分层应力,包括:在所述混凝土的底模板、顶面或所述混凝土之间的表面设置底面测点,用于测定所述底模板的温度场;在距离所述混凝土底面3m的高度设置表面监测点,用于检测所述混凝土的梁端面以及腹板外表面的温度梯度;在所述混凝土浇筑过程种的其...

【专利技术属性】
技术研发人员:满超群苏力陆维军王俊强尚亚新
申请(专利权)人:中铁北京工程局集团第二工程有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1