一种基于优化的Elman神经网络的无传感器设备故障预测方法技术

技术编号:38671072 阅读:11 留言:0更新日期:2023-09-02 22:49
本发明专利技术属于无传感器设备故障预测技术领域,具体的说是一种基于优化的Elman神经网络的无传感器设备故障预测方法。包括:一、根据产线设备的历史故障信息得到设备的故障间隔时间,建立Elman神经网络时间预测的数学模型;二、采用灰狼算法优化建立的Elman神经网络,建立优化的神经网络模型数学模型;三、建立故障间隔时间预测的映射函数,并对数据进行滑动窗口处理,将处理后的数据输入到优化后的网络中,进行网络训练;四、利用训练完成的网络对产线设备的故障间隔时间进行预测,得到最终预测结果。本发明专利技术充分发挥各自优势,实现对于产线中所有设备的全面故障预测,提高产线故障预测的准确性和全面性,为实现车间科学管理与制定合理的维护计划提供有力支撑。合理的维护计划提供有力支撑。合理的维护计划提供有力支撑。

【技术实现步骤摘要】
一种基于优化的Elman神经网络的无传感器设备故障预测方法


[0001]本专利技术属于无传感器设备故障预测
,具体的说是一种基于优化的Elman神经网络的无传感器设备故障预测方法。

技术介绍

[0002]随着智能制造的不断发展,企业对生产线整体可靠性提出了更高的要求,设备因故障预测缺陷引发生产事故的问题变得格外突出。生产线加装传感器进行故障预测可以帮助企业及时发现潜在故障,预测设备故障时间,从而制定合理的维护计划,进而减少停机时间和维修成本,增强生产线的稳定性和可靠性。在此背景下,传统仅采用单一有传感器设备故障预测的方法存在着一定的局限性。在智能制造的背景下,传感器设备故障预测技术已经成为生产线故障预测的重要手段,但该技术存在着一定的局限性。一方面,传感器的应用范围和安装位置通常受到限制,只能获取部分设备的运行状态信息,对于其他设备可能存在的故障情况无法有效监测。另一方面,传感器的使用也会增加设备的成本和数据复杂性,特别是对于一些老旧设备而言,安装传感器可能需要进行改造和升级,增加了维护成本和数据分析处理的难度。因此,仅采用单一有传感器设备故障预测的方法已难以满足智能制造对于高效、低成本、高质量的生产要求。
[0003]为克服这些局限性,无传感器设备故障预测技术的应用显得尤为重要。无传感器设备故障预测技术是指在无传感器设备的情况下,利用机器学习和人工智能算法来整合和分析历史故障数据,预测设备未来一定时间段内可能发生故障的间隔时间。该技术可以应用于不易安装传感器的设备上,并降低设备成本和数据传输和处理的负担,有效解决单一有传感器设备故障预测的方法的局限性。因此,在已有的有传感器设备故障预测基础上增加无传感器设备故障预测,可以更全面地应对复杂多变的生产环境和设备状态,提高整个产线的故障预测精度和生产效率,具有重要的应用意义和实际价值。

技术实现思路

[0004]本专利技术提供了一种基于优化的Elman神经网络的无传感器设备故障预测方法,在有传感器设备故障预测基础上增加无传感器设备故障预测。充分发挥各自优势,实现对于产线中所有设备的全面故障预测,提高产线故障预测的准确性和全面性,为实现车间科学管理与制定合理的维护计划提供有力支撑,解决了仅使用有传感器设备故障预测存在局限性的问题。
[0005]本专利技术技术方案结合附图说明如下:
[0006]一种基于优化的Elman神经网络的无传感器设备故障预测方法,包括以下步骤:
[0007]步骤一、根据产线设备的历史故障信息得到设备的故障间隔时间,建立Elman神经网络时间预测的数学模型;
[0008]步骤二、采用灰狼算法优化步骤一建立的Elman神经网络,建立优化的神经网络模
型数学模型;
[0009]步骤三、建立故障间隔时间预测的映射函数,并对数据进行滑动窗口处理,将处理后的数据输入到步骤二优化后的网络中,进行网络训练;
[0010]步骤四、利用步骤三训练完成的网络对产线设备的故障间隔时间进行预测,得到最终预测结果。
[0011]所述步骤一的具体方法如下:
[0012]11)对目标车间的产线设备的历史故障信息所记录的故障时间数据进行分析和处理,得到设备故障间隔时间信息;
[0013]12)根据设备故障间隔时间信息建立Elman神经网络时间预测的数学模型;具体如下:
[0014]网络的输入层接受外部输入,然后将输入层输入到隐含层;
[0015][0016]式中,v
i(t)
表示输入层输入;A表示输入层;B表示承接层;
[0017]在隐含层中,神经元接收到当前时刻的输入和前一时刻的承接层输出,将当前时刻的输入和前一时刻的承接层输出加权求和并通过sigmoid激活函数进行非线性转换,如下所示:
[0018][0019]式中,t为神经网络迭代次序;U
k(t)
为输入层净输入;h
n(t)
、x
n
(t)为隐含层输入和输出;f(*)为隐含层神经元的激活函数;
[0020]隐含层的输出作为下一时刻的输入通过承接层反馈到网络中,与当前输入一起计算输出层的输出,如下所示:
[0021]C
k(t)
=q(U
k(t)
)
[0022][0023]训练网络参数过程中Elman网络使用反向传播算法,通过计算输出层和隐含层之间的误差来更新网络权重;设ω
i
(t)表示网络权重,则权重表示为:
[0024][0025]式中,ω1、ω2分别为输入层到隐含层、承接层到隐含层的连接权值;
[0026]由于Elman网络具有反馈结构,因此反向传播算法还需计算和更新每个时刻的误差;随着输入数据的不断增加,自循环的结构把上一次的状态传递给当前输入,一起作为新的输入数据进行当前轮次的训练和学习,一直到输入或者训练结束,最终得到的输出即为最终的预测结果;
[0027]P
m(t+1)
=∑ω3(t+1)x
n
(t+1)
[0028]y(t+1)=g(P
m
(t+1))
[0029]式中,P
m(t)
、y(t)为输出层输入和输出;g(*)为输出层神经元的激活函数。
[0030]Elman神经网络时间预测的数学模型为:
[0031][0032]所述步骤二的具体方法如下:
[0033]21)确定神经网络的结构和参数;
[0034]Elman神经网络的参数包括权重和偏差;假设神经网络有N个输入节点,M个隐藏节点和K个输出节点,则权重和偏差表示为:
[0035]ω1∈R
(M
×
N)
,b1∈R
(M
×
1)
[0036]ω2∈R
(M
×
N)
,b2∈R
(M
×
1)
[0037]ω3∈R
(M
×
N)
,b3∈R
(K
×
1)
[0038]式中,b1、b2、b3分别为输入层到隐含层、承接层到隐含层和隐含层到输出层的偏差;
[0039]22)初始化灰狼种群;
[0040]灰狼算法的种群由多个灰狼组成;每个灰狼表示一个可能的神经网络;因此,灰狼的位置包括权重和偏差;设X
i,j
表示第i只灰狼在第j个维度上的位置,则初始化种群表示为:
[0041]X
i,j
=x
min,j
+rand()
×
(x
max,j

x
min,j
)
[0042]式中,x
min,j
和x
max,j
分别表示第j个维度上的取值范围的下限和上限;rand()为[0,1]之间的随机数;
[0本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种基于优化的Elman神经网络的无传感器设备故障预测方法,其特征在于,包括以下步骤:步骤一、根据产线设备的历史故障信息得到设备的故障间隔时间,建立Elman神经网络时间预测的数学模型;步骤二、采用灰狼算法优化步骤一建立的Elman神经网络,建立优化的神经网络模型数学模型;步骤三、建立故障间隔时间预测的映射函数,并对数据进行滑动窗口处理,将处理后的数据输入到步骤二优化后的网络中,进行网络训练;步骤四、利用步骤三训练完成的网络对产线设备的故障间隔时间进行预测,得到最终预测结果。2.根据权利要求1所述的一种基于优化的Elman神经网络的无传感器设备故障预测方法,其特征在于,所述步骤一的具体方法如下:11)对目标车间的产线设备的历史故障信息所记录的故障时间数据进行分析和处理,得到设备故障间隔时间信息;12)根据设备故障间隔时间信息建立Elman神经网络时间预测的数学模型;具体如下:网络的输入层接受外部输入,然后将输入层输入到隐含层;式中,v
i(t)
表示输入层输入;A表示输入层;B表示承接层;在隐含层中,神经元接收到当前时刻的输入和前一时刻的承接层输出,将当前时刻的输入和前一时刻的承接层输出加权求和并通过sigmoid激活函数进行非线性转换,如下所示:h
n(t+1)
=∑ω
i
(t)v
i
(t)式中,t为神经网络迭代次序;U
k(t)
为输入层净输入;h
n(t)
、x
n
(t)为隐含层输入和输出;f(*)为隐含层神经元的激活函数;隐含层的输出作为下一时刻的输入通过承接层反馈到网络中,与当前输入一起计算输出层的输出,如下所示:C
k(t)
=q(U
k(t)
)训练网络参数过程中Elman网络使用反向传播算法,通过计算输出层和隐含层之间的误差来更新网络权重;设ω
i
(t)表示网络权重,则权重表示为:式中,ω1、ω2分别为输入层到隐含层、承接层到隐含层的连接权值;
由于Elman网络具有反馈结构,因此反向传播算法还需计算和更新每个时刻的误差;随着输入数据的不断增加,自循环的结构把上一次的状态传递给当前输入,一起作为新的输入数据进行当前轮次的训练和学习,一直到输入或者训练结束,最终得到的输出即为最终的预测结果;P
m(t+1)
=∑ω3(t+1)x
n
(t+1)y(t+1)=g(P
m
(t+1))式中,P
m(t)
、y(t)为输出层输入和输出;g(*)为输出层神经元的激活函数。Elman神经网络时间预测的数学模型为:3.根据权利要求1所述的一种基于优化的Elman神经网络的无传感器设备故障预测方法,其特征在于,所述步骤二的具体方法如下:21)确定神经网络的结构和参数;Elman神经网络的参数包括权重和偏差;假设神经网络有N个输入节点,M个隐藏节点和K个输出节点,则权重和偏差表示为:ω1∈R
(M
×
N)
,b1∈R
(M
×
1)
ω2∈R
(M
×
N)
,b2∈R
(M
×
1)
ω3∈R
(M
×
N)
,b3∈R
(K
×
1)
式中,b1、b2、b3分别为输入层到隐含层、承接层到隐含层和隐含层到输出层的偏差;22)初始化灰狼种群;灰狼算法的种群由多个灰狼组成;每个灰狼表示一个可能的神经网络;因此,灰狼的位置包括权重和偏差;设X
i,j
表示第i只灰狼在第j个维度上的位置,则初始化种群表示为:X
i,...

【专利技术属性】
技术研发人员:李岩宋佩林崔振丰陆鹏王清云胡成威刘克平
申请(专利权)人:长春工业大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1