氧化物材料、氧化物薄膜的制造方法以及使用该材料的元件技术

技术编号:3211159 阅读:124 留言:0更新日期:2012-04-11 18:40
本发明专利技术提供了在钙钛矿型或层状钙钛矿型晶格结构的氧化物中固溶含有选自Si、Ge、Sn的1种以上的IV族元素的催化物质的氧化物材料。该钙钛矿型或层状钙钛矿型晶格结构的氧化物材料在低温下可结晶化,能够维持或改善这些氧化物材料的特性。(*该技术在2021年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术涉及氧化物材料、氧化物薄膜的制造方法以及使用该材料的元件,详细涉及可用于作为非易失性存储器的强电介质存储器的氧化物材料、氧化物薄膜的制造方法以及使用该材料的元件。
技术介绍
近年来,随着移动电话、笔记本电脑、掌上电脑等便携式终端的发展,强电介质存储器正受到关注。强电介质存储器能够使书写输入速度加快、实现大容量,所以对能够同时处理含有影像、声音等大量数据的大型媒体器材特别有用,并且存储数据不需电力,因而可以实现低耗电。强电介质存储器是利用强电介质的极化特性,通过外部电场自由地控制极化的方向,能够以“1”或“0”的二进制保存数据,同时也能够在断电时保存数据。但是,只有4-256K的小容量存储器被商品化。目前,由于强电介质材料自身存在的问题阻碍了强电介质存储器向Mbit级别的大容量化的发展。现在,常用的钛酸锆酸铅(PZT;PbZrxTi1-xO3)钙钛矿型强电介质材料(ABO3)、钽酸锶铋(SBT;SrBi2Ta2O9)及掺杂了La的高亮度钛酸铋(BIT;Bi4Ti3O12)等层状结构的强电介质材料(BiAm-1BmO3m+3)一般都需要在600~800℃的高温下长时间烧结(中村孝信学技报,电子情报通信学会,ED97-208(1998)p25-32;惠下隆他信学技报,电子情报通信学会,ED98-242(1999)p21-26;山口正树《有关在硅基板上形成钛酸铋薄膜的评估和研究》,芝浦工业大学博士学位论文,(1998)p39-47)。象这样的高温长时间结晶化,不仅可以充分显现强电介质自身的特性,还会如下所述的那样在用强电介质制作元件的工艺中,例如,SiO2钝化和电容器加工等过程中,可以尽可能改善强介电特性的劣化。因而,把用这些强电介质材料制作的强电介质电容器与半导体元件组合形成强电介质存储器时,由于强电介质材料形成需要很高的结晶化温度,所以必须将强电介质电容器与晶体管分开制作,这样就会造成制作工艺复杂化,组合所用的电极材料受到限制,强电介质存储器难以高密度集成化等问题。通常,在强电介质存储器中使用强电介质材料的薄膜。形成过程中,由于简便和忽略了各批之间的质量差而进行很好的批量生产,使用溶胶—凝胶法。在溶胶—凝胶法中,考虑到强电介质材料膜的组成中含有挥发性较高的铅和铋等成分,为了提高结晶性同时将成膜后的膜组成的差异控制在最小范围,通常在溶胶凝胶原料溶液中加入10%左右过量的挥发性较大的组分。但是,铅和铋这样的成分的过量加入会导致最终形成的强电介质薄膜的组成分布不均。此外,膜中的组成差异促使异相的产生(例如,BIT、SBT的烧绿石相和荧光相等),很难得到所希望的强电介质的单一相。而且,在强电介质存储器的制造中,如上所述,由于强电介质材料的结晶化温度较高,因而在高温烧结过程中需要具有足够耐久性的电极材料。例如,PbZrO3反强电介质与PbTiO3强电介质的固溶体PZT能够在比较低的温度下烧结,因而对电极材料造成的负担较小。但是,为确保实际应用中不可欠缺的残留极化值,烧结温度必须达到600~750℃(中村孝信学技报,电子情报通信学会,ED97-208(1998)p25-32),对电极材料造成的负担也不小。总之,在标准Pt电极上形成PZT薄膜时,由于反复翻转,极化值急剧劣化,明显出现所谓的膜疲劳。因此,经常使用价高而加工困难的Ir、IrO2等对强电介质的疲劳具有良好控制性的氧化物电极或Pt/IrO2等和氧化物电极的复杂的复合电极。另一方面,具有代表性的铋层状结构的强电介质材料SBT(SrBi2Ta2O9∶m=2),由于其在Pt电极上经1012次的反复翻转也不疲劳,因此受到了人们的关注,目前正积极开展对它的实用化探讨。但是,如果使SBT形成为薄膜状,则出现粗大的粒子低密度聚集,只能够得到劣化的表面组织(K.Aizawa,等,Jpn.J.Appl.Phys.,39(2000)p1191-1193),目前还无法实现高密度集成化(薄膜化)。虽然SBT的薄膜化的P-E磁滞形状非常良好,残留极化值Pr较低,为7~10μC/cm2,可用于现在已经商品化的强电介质电容器容量读取型存储器,但没有富余的极化特性,尚未有实用化的特性。此外,降低SBT结晶化的温度较困难。即为了SBT薄膜化,尝试了800℃的高温烧结或在650℃左右的相对低温下的5小时的长时间烧结(泽田佳宏等信学技报,电子情报通信学会、ED98-240(1999)p9-14),或两者结合的2个阶段的烧结(林慎一郎等信学技报,电子情报通信学会、ED98-241(1999)p15-19)。但是,因受热对电极材料产生的负担不是PZT的比,这种材料应用于实际还有很大的问题。近年,提出了通过掺杂La降低其结晶化(烧结)温度的方法。该方法中使用的材料BIT(Bi4Ti3O12∶m=3)正受到注目。这种材料与SBT一样,无铋层状结构,疲劳特性良好,转变温度(Tc)高达675℃,具有常温下非常稳定的材料特性。但是,即使这种材料也必须经历650℃下1小时的受热过程。因而,对电极材料的负担很大(B.H Park,B.S.Kang,S.D.Bu,T.W.Noh,J.Lee和W.Jo,Nature 401(1999)p682)。这种强电介质存在的最大课题是容易形成巨大粒子(中村孝《具有浮置栅构造的强电介质存储器的研究》、京都大学博士学位论文(1998)p118-140),与SBT一样难以薄膜化。要使强电介质薄膜元件的高密度集成化、低电压驱动化,必须使强电介质自身极端的薄膜化。但是,由于强电介质的表面c的不良,不能形成具有良好重现性的100nm以下的薄膜。即使能形成100nm以下的膜厚,最终强介电特性也会急剧劣化(青木克裕等信学技报,电子情报通信学会、ED98-245(1999)p43-49))。强电介质薄膜的表面组织的劣化,不论是溶胶凝胶法还是MOCVD法等成膜法,都会从下部电极(例如,铂电极)上、即强电介质薄膜的最下端结晶化,在上面聚集成凸出的组织。另外,不仅下部电极材料与强电介质的相容性较差,还由于强电介质的结晶化仅依靠铂电极的催化性,所以强电介质的结晶化初期晶核的形成密度较低。因此,要使强电介质形成100nm以下的薄膜,强电介质薄膜不能完全覆盖下部电极,成长为岛状。其结果是,形成非常混乱的表面组织,得到的强电介质薄膜的漏电电流密度增加。此外,众所周知,以有机金属原料为原始材料的强电介质薄膜,膜中残留了大量的碳,这也是造成漏电电流密度增大的一个原因。另外,这些强电介质材料在还原氛围气下的强介电特性劣化(Y.Shimamoto,等,Appl Phys Lett.,70(1997)p1-2)。例如,强电介质材料用于电容器时,通常进行以臭氧TEOS等为强电介质电容器的保护膜的SiO2钝化。此时,形成于铂上部电极的强电介质电容器处于氢氛围气中。于是,在铂上部电极的催化作用下活化的氢原子使强电介质还原,强电介质的结构被破坏,导致强介电特性大幅下降。其原因是,强电介质是离子结合性较强的材料(一般认为离子键是较强的结合,但离子产生的攻击却非常弱),因劣化的表面组织受攻击的实际面积较大。因此,为使结构遭到破坏的强电介质材料的特性恢复,在SiO2钝化后再次在氧氛围气下通过烧结等方法进行强本文档来自技高网...

【技术保护点】
氧化物材料,其特征在于,在钙钛矿型或层状钙钛矿型晶格结构的氧化物中固溶含有选自Si、Ge及Sn的1种以上的元素的催化物质而形成。

【技术特征摘要】
JP 2000-10-17 316910/2000;JP 2001-2-6 30170/20011.氧化物材料,其特征在于,在钙钛矿型或层状钙钛矿型晶格结构的氧化物中固溶含有选自Si、Ge及Sn的1种以上的元素的催化物质而形成。2.如权利要求1所述的材料,其特征还在于,构成钙钛矿型或层状钙钛矿型晶格结构的氧化物的晶格中的阳离子位置含有Si4+、Ge4+或Sn4+。3.如权利要求2所述的材料,其特征还在于,构成钙钛矿型或层状钙钛矿型晶格结构的氧化物材料的氧八面体的中心含有Si4+、Ge4+或Sn4+。4.如权利要求1~3中任一项所述的材料,其特征还在于,钙钛矿型或层状钙钛矿型晶格结构的氧化物为ABO3、(Bi2O2)2+(Am-1BmO3m+1)2-(式中,A是选自Li+、Na+、K+、Pb2+、Ca2+、Sr2+、Ba2+、Bi3+、Y3+、Mn3+及La3+的1种或2种以上的离子,B是选自Ru3+、Fe3+、Ti4+、Zr4+、Cu4+、Nb5+、Ta5+、V5+、W6+及Mo6+的1种或2种以上的离子,m是大于1的自然数)、LnBa2Cu3O7、Z2Ba2Can-1CunO2n+4或ZBa2Can-1CunO2n+3(式中,Ln是选自Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及Lu的1种或2种以上的离子,Z是选自Bi、Tl、Hg的1种或2种以上的离子,n是1~5的自然数),催化物质为由选自CaO、BaO、PbO、ZnO、SrO、MgO、FeO、Fe2O3、B2O3、Al2O3、In2O3、Y2O3、Sc2O3、Sb2O3、Cr2O3、Bi2O3、Ga2O3、CuO2、MnO2、ZrO2、TiO2、MoO3、WO3、V2O5及稀土元素的氧化物的1种以上的氧化物和选自SiO2、GeO2及SnO2的1种以上的IV族元素的氧化物形成的复合氧化物材料。5.如权利要求4所述的材料,其特征还在于,复合氧化物材料为X2SiO5、X4Si3O12、X2GeO5、X4Ge3O12、X2SnO5或X4Sn3O12表示的材料,式中,X表示Ca2+、Ba2+、Pb2+、Zn2+、Sr2+、Mg2+、Fe2+、Fe3+、B3+、Al3+、In3+、Y3+、Sc3+、Sb3+、Cr3+、Bi3+、Ga3+、Cu4+、Mn4+、Zr4+、Ti4+、Mo6+、W6+、V5+、La3+、Ce3+、Pr3+、Nd3+、Pm3+、Sm3+、Eu3+、Gd3+、Tb3+、Dy3+、Ho3+、Er3+、Tm3+、Yb3+、Lu3+。6.如权利要求1所述的材料,其特征还在于,钙钛矿型或层状钙钛矿型晶格结构的氧化物与含有选自Si、Ge及Sn的1种以上的IV族元素的催化物质以1∶0.01~0.8的摩尔比固溶。7.氧化物材料,其特征在于,所述材料为钙钛矿型或层状钙钛矿型晶格结构的氧化物,构成钙钛矿型或层状钙钛矿型晶格结构的氧化物的晶格中的阳离子位置含有Si4+、Ge4+或Sn4+。8.如权利要求6所述的材料,其特征还在于,所述材料为钙钛矿型或层状钙钛矿型晶格结构的氧化物,构成钙钛矿型或层状钙钛矿型晶格结构的氧化物的氧八面体的中心含有Si4+、Ge4+或Sn4+。9.氧化物材料的制...

【专利技术属性】
技术研发人员:木岛健石原宏
申请(专利权)人:夏普株式会社东京工业大学校长代表的日本国
类型:发明
国别省市:JP[日本]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利