一种层状多孔硅材料及其制备方法和应用技术

技术编号:31488522 阅读:14 留言:0更新日期:2021-12-18 12:24
本发明专利技术公开了一种层状多孔硅材料及其制备方法和应用,它涉及一种锂离子电池负极材料及其制备方法和应用。层状多孔硅颗粒在垂直方向上呈层状结构,水平方向上呈现均匀分布的多孔结构,所述层状多孔硅材料的粒径尺寸为0.5~50μm,其任意相邻层间均存在纳米级宽度的狭缝空隙,所述狭缝空隙的宽度为5~100nm,平面上孔径为5~50nm。其制备方法为:盐酸刻蚀CaSi2制备硅氧烯材料;层间吸附填充剂;300~750℃煅烧得到氧化硅材料;镁热还原并用酸洗涤副产物得到层状多孔硅。本发明专利技术制备工艺简单,对设备要求不高,易于产业化大量生产,并且得到的层状多孔硅材料可以直接用作锂离子电池负极材料,表现了优异的电化学性能。表现了优异的电化学性能。

【技术实现步骤摘要】
一种层状多孔硅材料及其制备方法和应用


[0001]本专利技术涉及能源材料
,更具体的说是涉及一种层状多孔硅材料及其制备方法和应用。

技术介绍

[0002]锂离子电池具有能量密度高、循环寿命长、转换效率高、无记忆效应、自放电率低、工作温度范围宽和环境友好等优点,因而在移动电子终端设备领域占据主导地位,也是电动交通工具和规模化储能的理想电源系统。随着便携式电子设备和电动汽车的快速发展,对锂离子电池的需求和性能要求急剧增长,锂离子电池急需向更高能量密度方向发展。负极材料是影响锂离子电池能量密度的重要因素。石墨类负极材料(理论容量仅372mAh
·
g
‑1)是目前商业化锂离子电池使用的主要负极材料,已不能满足高比能量锂离子电池的需求。因此,寻找超高储锂能力的负极材料以替代石墨类材料一直是锂离子电池领域的研究热点。
[0003]在非碳负极材料中,硅以其超高的容量优势(理论容量为4200mAh
·
g
‑1)、适宜的脱/嵌锂电位(低于0.5V vs Li/Li
+
)、丰富的储量等优势成为最有前途的下一代锂离子电池负极材料。然而,硅材料在脱嵌锂过程中体积膨胀收缩比较严重,约高达400%,由此会引发材料粉化、SEI膜不稳定、容量衰减严重等一系列问题,严重制约了硅材料的应用。大量研究表明在硅材料内部预留空体积可以缓解嵌锂过程中的体积膨胀,因此开发多孔硅是一种改善硅材料电化学性能的有效手段,并有潜力应用于工业生产中。然而,目前报道的多孔硅材料都存在孔隙分布不均匀的问题(CN201711008723.6;CN201510148171.3),在缓解体积变化、应力/应变方面的效果还有待提高。如何发展一种具有均匀分布孔结构的多孔硅材料以提高电池的电化学性能是本领域技术人员亟需解决的问题。

技术实现思路

[0004]本专利技术的目的在于提供一种层状多孔硅材料及其制备方法,HCl刻蚀CaSi2得到层状硅氧烯材料,层间吸附填充剂;300~750℃煅烧得到氧化硅材料;镁热还原并用酸洗涤副产物得到层状多孔硅材料。本专利技术制备得到的层状多孔硅材料不仅具有层状结构,而且片层上还有均匀分布的的孔结构。这种层状多孔硅材料可以用作锂离子电池的负极材料,并且能够表现出优异的电化学性能。
[0005]为了达到上述目的,本专利技术采用如下技术方案:
[0006]一种层状多孔硅材料具有类似筛网的均匀分布的多孔结构,所述层状多孔硅材料在垂直方向上呈层状结构,平面方向上呈多孔结构,所述层状多孔硅材料的粒径尺寸为0.5~50μm,其任意相邻层间均存在纳米级宽度的狭缝空隙,所述狭缝空隙的宽度为5~100nm,水平面上的孔是直径为5~50nm的近圆形结构。
[0007]上述的层状多孔硅材料的制备方法,包括以下步骤:
[0008](1)制备硅氧烯材料:配置浓度为0.1

10M的盐酸溶液,搅拌条件下将CaSi2缓慢加
入配置好的盐酸溶液中,反应完毕后将产物经水洗至中性后过滤并在真空80~120℃条件下烘干,得到硅氧烯材料;
[0009](2)将硅氧烯材料加入A溶液中,硅氧烯材料与物质A的质量比为1:(0.01~20),30~95℃下搅拌5~24h,待水分蒸发完毕后,收集硅氧烯与物质A的混合物B;
[0010](3)将混合物B在惰性气氛下于300~750℃下煅烧1~5h,得到氧化硅和物质A的混合物C;
[0011](4)制备层状多孔硅材料:将步骤(3)得到的混合物C与Mg粉混合均匀后,惰性气氛下烧结2~6h,降至室温后将产物依次用HCl、HF溶液洗涤除杂,去离子水或乙醇洗涤3~7次至中性,干燥后即可得到层状多孔硅材料。
[0012]优选的,在上述一种层状多孔硅材料的制备方法中,步骤(1)中所述CaSi2与盐酸溶液的比例为1g:(10~500)mL;反应时间为18~36h。
[0013]优选的,在上述一种层状多孔硅材料的制备方法中,步骤(2)中A溶液为NaCl、NaI、KCl、KI、CaCl2、ZnCl2、NaBr、KBr、ZnBr2中的一种或几种,且A溶液的浓度为0.1~3g/mL。
[0014]上述技术方案的有益效果是:硅氧烯加入A溶液中后,物质A会进入到硅氧烯层间,随着水分蒸发完全,物质A会在硅氧烯颗粒的层间、表面以及周围重结晶。在后续的镁热还原过程中,物质A可以有效地在两层硅层间起到隔离作用,有利于保持层状结构;另外,物质A还可以吸收镁热还原放出的热量,防止反应过程中温度过高导致硅的重结晶,有利于更好地保持层状多孔硅的形貌;并且物质A在后续的镁热还原过程中不参与反应,水洗即可除去,因而不会在得到的层状多孔硅中引入杂质。
[0015]优选的,在上述一种层状多孔硅材料的制备方法中,步骤(3)中所述惰性气氛为N2、Ar或H2/Ar混合的气氛。
[0016]上述技术方案的有益效果是:惰性气氛下烧结可以除去硅氧烯表面的

H和

OH,得到无定型的氧化硅材料,氧化硅材料可以作为后续镁热还原制备层状多孔硅的前驱体,以便得到层状多孔硅材料。
[0017]优选的,在上述一种层状多孔硅材料的制备方法中,步骤(4)中Mg粉与步骤(2)中硅氧烯材料的质量比为(0.7~1.5):1。
[0018]上述技术方案的有益效果是:控制镁粉与硅氧烯的质量比即为控制镁粉与氧化硅的质量比,可以确保镁热还原反应的顺利进行。镁粉过少可能会使反应不完全,影响层状多孔硅的产率;镁粉过量会导致其与生成的多孔硅单质在高温下进一步反应生成硅化镁,不仅会影响层状多孔硅的产率,也会引入杂质。
[0019]优选的,在上述一种层状多孔硅材料的制备方法中,步骤(4)中所述烧结的具体操作参数如下:升温速度为1~10℃/min,烧结温度为500~800℃,烧结气氛为N2、Ar或H2/Ar混合气氛中的一种。
[0020]上述技术方案的有益效果是:合理控制升温速度、烧结温度可以确保镁热还原反应的顺利进行,N2、Ar或H2/Ar混合等惰性气氛可以防止镁热还原后得到的单质硅在高温下发生氧化。
[0021]优选的,在上述一种层状多孔硅材料的制备方法中,步骤(4)中所述的HCl的浓度为0.05~3mol/L,HF的浓度1~10%,搅拌速度为200~1000r/min,HCl洗涤时间为5~15h,HF洗涤时间为5min~30min。
[0022]上述技术方案的有益效果是:HCl和HF的充分洗涤可以除去镁热还原产物中的金属镁、氧化镁、氧化硅杂质,有利于得到高纯度的层状多孔硅材料。
[0023]优选的,在上述一种层状多孔硅材料的制备方法中,步骤(4)中所述干燥方式为真空干燥或者冷冻干燥10~24h,所述真空干燥温度为80~120℃,所述冷冻干燥温度为

35~

50℃。
[0024]上述技术方案的有益效果是:真空干燥或者冷冻干燥可以防止在干燥的过程中层状多本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.一种层状多孔硅材料,其特征在于,所述层状多孔硅材料在垂直方向上呈层状结构,水平方向上呈均匀分布的多孔结构,所述层状多孔硅材料的粒径尺寸为0.5~50μm,任意相邻层间均存在纳米级宽度的狭缝空隙,所述狭缝空隙的宽度为5~100nm,水平方向上的孔是直径为5~50nm的近圆形结构。2.一种权利要求1所述的层状多孔硅材料的制备方法,其特征在于,包括以下步骤:(1)制备硅氧烯材料:配置浓度为0.1

10M的盐酸溶液,搅拌条件下将CaSi2缓慢加入配置好的盐酸溶液中,反应完毕后将产物经水洗至中性后过滤并在真空80~120℃条件下烘干,得到硅氧烯材料;(2)将硅氧烯材料加入A溶液中,硅氧烯材料与物质A的质量比为1:(0.01~20),30~95℃下搅拌5~24h,待水分蒸发完毕后,收集硅氧烯与物质A的混合物B;(3)将混合物B在惰性气氛下于300~750℃下煅烧1~5h,得到氧化硅和物质A的混合物C;(4)制备层状多孔硅材料:将步骤(3)得到的混合物C与Mg粉混合均匀后,惰性气氛下烧结2~6h,降至室温后将产物依次用HCl、HF溶液洗涤除杂,去离子水或乙醇洗涤3~7次至中性,干燥后即可得到层状多孔硅材料。3.根据权利要求2所述的一种层状多孔硅材料的制备方法,其特征在于,步骤(1)中CaSi2与盐酸溶液的比例为1g:(10~500)mL,反应时间为18~36h。4.根据权利要求2所述的一种层状多孔硅材料的制备方法,其特征在于,步骤(2)中所述A溶液为NaCl、NaI、KCl、KI、CaCl2、Z...

【专利技术属性】
技术研发人员:杜春雨任阳尹旭才尹鸽平霍华高云智程新群左朋建马玉林
申请(专利权)人:哈尔滨工业大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1