纳米W型铁氧体粉体的低温燃烧制备方法技术

技术编号:3108489 阅读:172 留言:0更新日期:2012-04-11 18:40
本发明专利技术属于纳米W型铁氧体粉体的低温燃烧法制备方法。是溶胶-凝胶法和低温燃烧合成的有机结合,在溶胶形成过程中引入燃料或氧化剂柠檬酸,控制最终溶液中柠檬酸与金属离子摩尔比为1-5∶1-5,调节pH值为5-9,溶液在60-100℃蒸发得透明的溶胶,然后在110-150℃干燥12-48h得干凝胶,将干凝胶在空气中点燃得到红棕色膨松的粉末,将粉末在800-1100℃煅烧1-5h,即得到50-180nm的CoZn-W型铁氧体粉体。

【技术实现步骤摘要】

本专利技术属于纳米W型铁氧体粉体的低温燃烧制备方法
技术介绍
W型六角铁氧体分子式为Ba(CoxZn1-x)2Fe16O27,由于其在通信,电子和汽车配件等方面作为永磁材料的潜在用途受广泛关注;同时,具有平面结构的W型六角铁氧体是性能优良的微波吸收材料。制备W型六角铁氧体的方法包括机械球磨法、共沉淀法及溶胶-凝胶法,如2002年Zhang Haijun等人在Ceram.Int.28期171页报道用溶胶-凝胶法制备W型六角铁氧体。但这些方法耗时,制备过程易引入杂质,煅烧温度≥1200℃,易引起粒径粗化、某些元素的挥发和产品性能的下降。由于各种金属盐类在水中溶解度的差异,在湿化学制备过程中,需加入10-20%过量的Ba(NO3)2以保持最终产品的化学计量比。
技术实现思路
本专利技术的目的是提供一种纳米W型铁氧体粉体的低温燃烧制备方法。本专利技术首次采用低温燃烧,是溶胶-凝胶法和低温燃烧合成的有机结合,其实质是一种剧烈的氧化还原反应。在溶胶形成过程中引入燃料或氧化剂如柠檬酸,进一步脱水所得凝胶在空气中点燃,所得粉末进一步在高温煅烧即得W型铁氧体粉体。该专利技术克服传统方法的缺点,在低的煅烧温度即可得到均相的粒径在50-150nm的六方形态的W型铁氧体粉体。原料价廉,方法简单可行,耗能低,工艺过程易于控制,便于工业化生产。制备过程本专利技术合成的W型铁氧体粉体的分子式为Ba(CoxZn1-x)2Fe16O27,x=0-1,首先按化学计量比称好Fe(NO3)3,Zn(NO3)2,Co(NO3)2,BaCO3,将BaCO3溶解在过量10-60%的醋酸中得溶液I,将Fe(NO3)3,Zn(NO3)2,Co(NO3)2和柠檬酸溶于去离子水中配成溶液II,将溶液I和II混合,控制最终溶液中柠檬酸与金属离子摩尔比为1-5∶1-5,柠檬酸的浓度为0.5-4mol/l,加入少量氨水,调节PH值为5-9,溶液在60-100℃蒸发得透明的溶胶,然后在110-150℃干燥12-48h得干凝胶,将干凝胶在空气中点燃得到红棕色膨松的粉末。将粉末在800-1100℃煅烧1-5h,即得到50-180nm的CoZn-W型铁氧体粉体。X射线衍射(XRD)表明,煅烧后形成W型的铁氧体粉末。透射电镜(TEM)表明,所得的铁氧体为六角型。通过调节合成铁氧体的结构式或是改变合成条件以可以调节粒径的大小,可最终影响所得W型的铁氧体粉末的磁性能。附图说明附图1为W型铁氧体粉末的X射线衍射图。附图2为W型铁氧体粉末的透射电镜照片。具体实施例方式实施例1为合成分子式为Ba(Co0.25Zn0.75)2Fe16O27的W型铁氧体粉体,首先按化学计量比称好Fe(NO3)3,Zn(NO3)2,Co(NO3)2,BaCO3,将BaCO3溶解在过量10%的醋酸中得溶液I,将Fe(NO3)3,Zn(NO3)2,Co(NO3)2和柠檬酸溶于去离子水中配成溶液II,将溶液I和II混合,控制最终溶液中柠檬酸/各种金属离子摩尔比为2∶3,柠檬酸的浓度为2mol/l。加入少量氨水,调节PH值大约为5,溶液在60℃蒸发得透明的溶胶,然后在110℃干燥24h得干凝胶,将干凝胶在空气中点燃得到红棕色膨松的粉末。将粉末在800℃煅烧2h,即可得到粒径约为70nm的CoZn-W型铁氧体粉体。实施例2为合成分子式为Ba(Co0.5Zn0.5)2Fe16O27的W型铁氧体粉体,首先按化学计量比称好Fe(NO3)3,Zn(NO3)2,Co(NO3)2,BaCO3,将BaCO3溶解在过量30%的醋酸中得溶液I,将Fe(NO3)3,Zn(NO3)2,Co(NO3)2和柠檬酸溶于去离子水中配成溶液II,将溶液I和II混合,控制最终溶液中柠檬酸/各种金属离子摩尔比为3∶2,柠檬酸的浓度为0.8mol/l。加入少量氨水,调节PH值大约为7,溶液在80℃蒸发得透明的溶胶,然后在130℃干燥18h得干凝胶,将干凝胶在空气中点燃得到红棕色膨松的粉末。将粉末在900℃煅烧2h,即可得到粒径约为80nm纳米CoZn-W型铁氧体粉体。实施例3为合成分子式为Ba(Co0.75Zn0.25)2Fe16O27的W型铁氧体粉体,首先按化学计量比称好Fe(NO3)3,Zn(NO3)2,Co(NO3)2,BaCO3,将BaCO3溶解在过量10-60%的醋酸中得溶液I,将Fe(NO3)3,Zn(NO3)2,Co(NO3)2和柠檬酸溶于去离子水中配成溶液II,将溶液I和II混合,控制最终溶液中柠檬酸/各种金属离子摩尔比为2∶1,柠檬酸的浓度为3mol/l。加入少量氨水,调节PH值大约为8,溶液在90℃蒸发得透明的溶胶,然后在130℃干燥30h得干凝胶,将干凝胶在空气中点燃得到红棕色膨松的粉末。将粉末在1100℃煅烧2h,即可得到粒径约为100nm纳米CoZn-W型铁氧体粉体。实施例4为合成分子式为BaCo2Fe16O27的W型铁氧体粉体,首先按化学计量比称好Fe(NO3)3,Co(NO3)2,BaCO3,将BaCO3溶解在过量50%的醋酸中得溶液I,将Fe(NO3)3,Co(NO3)2和柠檬酸溶于去离子水中配成溶液II,将溶液I和II混合,控制最终溶液中柠檬酸/各种金属离子摩尔比为2∶5,柠檬酸的浓度为4mol/l。加入少量氨水,调节PH值大约为6,溶液在85℃蒸发得透明的溶胶,然后在140℃干燥35h得干凝胶,将干凝胶在空气中点燃得到红棕色膨松的粉末。将粉末在1100℃煅烧3h,即可得到粒径约为140nm纳米CoZn-W型铁氧体粉体。本文档来自技高网...

【技术保护点】
一种纳米W型铁氧体粉体的低温燃烧制备方法,其特征在于分子式为Ba(Co↓[x]Zn↓[1-x])↓[2]Fe↓[16]O↓[27],x=0-1,首先按化学计量比称取Fe(NO↓[3])↓[3],Zn(NO↓[3])↓[2],Co(NO↓[3])↓[2],BaCO↓[3],将BaCO↓[3]溶解在过量10-60%的醋酸中得溶液Ⅰ,将Fe(NO↓[3])↓[3],Zn(NO3)↓[2],Co(NO3)↓[2]和柠檬酸溶于去离子水中配成溶液Ⅱ,将溶液Ⅰ和Ⅱ混合,控制最终溶液中柠檬酸与金属离子摩尔比为1-5∶1-5,柠檬酸的浓度为0.5-4mol/l,加入少量氨水,调节PH值为5-9,溶液在60-100℃蒸发得透明的溶胶,然后在110-150℃干燥12-48h得干凝胶,将干凝胶在空气中点燃得到红棕色膨松的粉末,将粉末在800-1100℃煅烧1-5h,即得到50-180nm的CoZn-W型铁氧体粉体。

【技术特征摘要】
1.一种纳米W型铁氧体粉体的低温燃烧制备方法,其特征在于分子式为Ba(CoxZn1-x)2Fe16O27,x=0-1,首先按化学计量比称取Fe(NO3)3,Zn(NO3)2,Co(NO3)2,BaCO3,将BaCO3溶解在过量10-60%的醋酸中得溶液I,将Fe(NO3)3,Zn(NO3)2,Co(NO3)2和柠檬酸溶于去离子水中配成溶液II,将溶液I...

【专利技术属性】
技术研发人员:颜世峰周恩乐
申请(专利权)人:中国科学院长春应用化学研究所
类型:发明
国别省市:82[中国|长春]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利