基于复拉普拉斯矩阵的二阶编队控制方法技术

技术编号:27974128 阅读:27 留言:0更新日期:2021-04-06 14:07
基于复拉普拉斯矩阵的二阶编队控制方法,步骤如下:1)建立复平面内的多移动机器人运动模型。2)建立多机器人系统的拓扑图。3)构建实拉普拉斯矩阵。4)配置复拉普拉斯矩阵的权重。5)设计二阶控制协议6)设计速度衰减因子7)设计离散控制信号。本专利提出的二阶编队控制策略符合机器人实际的动力学方程,并且能够在一定程度上加速机器人编队效率,整个通信网络庞大时,效果尤为明显。工程师可根据机器人编队队形需要快速设计通信网络,该方法是分布式的,结构简单,实用性强,效率高,对于通信时延有一定的鲁棒性,为多移动机器人的编队控制提供了可行方案。

【技术实现步骤摘要】
基于复拉普拉斯矩阵的二阶编队控制方法
本专利技术涉及多移动机器人编队控制
,具体而言,是一种多个机器人行进过程中使用基于复数加权的网络通信二阶控制协议驱动机器人达到目标编队队形,实现机器人编队的方法。
技术介绍
随着制造业技术的发展,机器人的生产成本不断降低,性能逐渐增强,功能日渐多样。机器人的生产成本的廉价化使得协同控制多台机器人设备完成某些任务中更经济。协同控制多台可移动的机器人设备在军用和民用上都具有广泛的应用前景。在生产制造和日常生活中,协同控制的多移动机器人群已进入了部分岗位并扮演了重要的角色。在2019年的“双11”购物节,机器人公司智嘉(Geek+)部署了超过4000台机器人大规模集群调度,72小时内发货811万单,比人工效率提升了近1倍。在图书馆,博物馆,银行等室内场所,亦有不少移动机器人行走其间,扮演着“领航员”、“自助柜员”等角色。在未来,随着人口结构的调整,多移动机器人代替部分人力工作是一种可预见的趋势。这一趋势在道路清洁,设备搬运,农产品收割等劳动密集的生产制造中尤为突出。在军事领域,协同控制的多移动机器人的应用更为广泛。2015年美军研发的“郊狼”无人机群,其个体体积小,重量轻,造价成本低,生产周期短,可快速部署战场作战环境,短时间内实现规模效应,以自杀式进攻摧毁目标单位达到作战目标。2020年,电科集团公布了陆空协同固定翼无人机作战系统“蜂群”。与“郊狼”机群相比,“蜂群”系统配备的无人机规模更大,作战能力更强。普通运输机在配备蜂群系统后也具备了很强的攻击能力。除了战场作战之外,移动机器人集群还可用于大地测量,气象观测,航拍,城市环境检测,地球资源勘探等许多军事研究工作。可以说,结构化规模化的机器人群组在信息化战争中扮演着重要的角色。在上述的应用中,机器人群通常被要求排列成指定的队形,以同步性地覆盖更多的区域,进而达到提升任务效率的目的。如何协同地驱动控制机器人群完成指定队形是一个十分复杂的问题,其内容包括机器人运动学控制,空气动力学,数据传输干扰与反干扰,机器人编队控制,机器人地图构建和机器人运动轨迹规划等子问题。在这些子问题中,如何进行机器人的编队控制是多移动机器人系统协同控制的基本问题之一。机器人编队控制问题的核心是多个具有可移动的机器人设备(例如无人机,人造卫星,水下探测器等)所组成的团队,如何在空间中保持某种预期的几何关系(即队形),又同时满足环境约束的控制问题。通常,编队控制指的是通过机器人之间局部的信息交互实现机器人编队目标的控制方法。编队控制问题的研究自上个世纪80年代计算机工程师用局部一致性的控制协议模仿鸟类的编队飞行以来已近40年。2003年基于拉普拉斯矩阵的一致性问题的研究翻开了其后20年内多机器人系统控制的新篇章。总体而言,这些研究衍生出基于位置,基于相对距离和基于距离三种编队控制方式。其中,基于相对距离的编队控制,也通常被认为是基于一致性的编队控制,被许多学者、工程师认为最有应用前景的一项技术。原因在于其控制拓扑相对简单,对环境要求较低,不仅可以将其部署在一般的室内环境如仓库,转运中心等,还可部署于一些极端环境如外太空,深海,灾难中心等地。该技术具有良好的可扩展性,可便捷地增减机器人个数而不影响整个编队系统的稳定性。基于一致性的编队控制策略大多建立在实数域上,这些控制策略都是实数多项式。随着研究的深入,近几年的控制器设计有部分转为复数域控制器——控制协议是一项含有复数的多项式。实数通常被认为可以与直线上的点对应,而复数则被认为可以与平面内的点相对应。由于复数的这一特性,由复数设计的控制器更适合用于描述二维平面内的运动学方程。特别更有利于简洁的描述编队的队形旋转和队形放缩的控制。在复数域的多机器人系统编队控制,近年来已有不少学者进行了深入的研究。林志赟教授团队基于复拉普拉斯矩阵设计了多智能体的通信协议。根据该协议,移动机器人可在二维平面内实现编队控制(Distributedformationcontrolofmulti-agentsystemsusingcomplexlaplacian[J].,IEEETransactionsonAutomaticControl,2014,59(7):1765-1777.)。中国科学院研究员娄有成等人提出了一种基于复伴随矩阵的凸几何目标环绕的编队控制策略(LouY,HongY.Distributedsurroundingdesignoftargetregionwithcomplexadjacencymatrices[J].IEEETransactionsonAutomaticControl,2014,60(1):283-288.)。而在专利专利技术方面,中国专利文献CN106647771B与CN105511494A是本专利技术最接近的现有技术。专利CN106647771B介绍了一种基于复数拉普拉斯矩阵的最小步编队控制技术,而CN105511494A介绍了基于复拉普拉斯矩阵的编队技术。现有的编队控制文献主要在两个方面对编队控制技术进行了研究。一方面侧重于编队控制本身的研究,即如何设计一项简单的控制协议使机器人在平面内形成目标队形。另一方面侧重于对机器人编队控制的性能进行研究,即机器人编队控制如何抵抗外界干扰,包括通信延迟,运算延迟,通信断链,机器人如何保证快的收敛速度和鲁棒的性能。在专利CN105511494A中,林志赟等人通过复数域中流形的理论,提供机器人编队控制协议的复数解析表达式,又通过图论的概念结合矩阵理论,解决了如何设计机器人编队控制的通信网络的问题。该专利技术虽然构建了基于复拉普拉斯矩阵的编队框架,但是存在一些问题。一是,该专利技术所提出的系统中,机器人之间的通信对应的拓扑图必须是双根的。双根是数学中图论的概念,指的是一张拓扑图中必须有两个根节点,从这两个根节点出发可以连至图中任意节点。双根图的复杂性使工程师在设计拓扑时存在困难。尤其是当整个网络非常巨大时(当机器人个数超过100个),工程师可能需要同时考虑含数千条通信连接的拓扑网络。二则,该专利技术必须求解一个使系统稳定的稳定矩阵来重新配置系统极点。稳定矩阵求解并不容易,需要通过牛顿同伦法等数学方法求解数值解。非特殊情况下,超过10个以上机器人的系统求解已不易,而超过100个机器人的系统几乎不可能被求解。针对以上问题,本专利技术提出了一种结构简单便于实施的机器人二阶编队控制协议——该协议只需通信网络对应的拓扑图存在一棵有向生成树。有向生成树指的是每个机器人都存在至少一个可测量的邻近机器人,是多机器人系统中拓扑图中最简单的一种。并且,本专利能够根据性能需要(收敛速度),适当地调控控制协议(调整后可快于一阶控制器),并且无需因系统的稳定性进行复杂的特征值配置工作。
技术实现思路
本专利技术要克服现有技术中多个移动机器人在二维平面编队控制时拓扑结构复杂、配置稳定矩阵困难的缺点,提供一种多移动机器人的二阶编队方法,旨在使机器人编队控制更简单,更便捷,更高效。本专利技术的多移动机器人的二阶编队方法。首先,对机器人在二维平面的运动建模,并用复数来表示机器人在二维平面内的坐标。以复数的实部来表示本文档来自技高网
...

【技术保护点】
1.基于复拉普拉斯矩阵的二阶编队控制方法,具体步骤如下:/n步骤1,建立运动模型;/n首先对机器人的活动空间建立全局坐标系。对于机器人的活动空间内,建立x-y笛卡尔坐标系。对于每个机器人都可以标记其在这个空间内的坐标(x,y),使用复数(x+yj)用于表征机器人在平面内的位置。j指的是复数中的单位虚数

【技术特征摘要】
1.基于复拉普拉斯矩阵的二阶编队控制方法,具体步骤如下:
步骤1,建立运动模型;
首先对机器人的活动空间建立全局坐标系。对于机器人的活动空间内,建立x-y笛卡尔坐标系。对于每个机器人都可以标记其在这个空间内的坐标(x,y),使用复数(x+yj)用于表征机器人在平面内的位置。j指的是复数中的单位虚数即使用符号表示所有复数的集合。不失一般性,可设平面内参与编队的机器人个数一共为n个,用数字1,2...,n-1,n对这些机器人分别进行编号。把第i个机器人在平面中的位置用符号xi表示,则所有的机器人的位置可用一列n维的复数向量表示,x=(x1,x2,...,xn)T,其中(·)T为矩阵的转置。在编队控制中,如果不考虑碰撞,一般视机器人为无碰撞体积的质点。系统中的每个机器人都服从双积分器运动模型:







是第i个机器人的加速度控制信号,vi是第i个机器人的速度。
步骤2,建立多机器人系统的拓扑图;
将多机器人相互之间的信息交互表示为有向拓扑图G=(V,E),其中V={v1,v2,...vn}表示图中的n个节点的集合,图G中的节点vi表示第i个机器人,表示节点与节点之间的边的集合,图G中的边eik∈E表示机器人i能测量机器人k的相对位置其中ρ表示两个机器人之间的距离,θ表示机器人k相对于机器人i的角度。从任意机器人出发建立一棵有向生成树,使其余机器人均在生成树的节点上。简言之,每一个机器人至少能测量任一个其余机器人的相对位置。
步骤3,根据拓扑图实现实拉普拉斯矩阵;
对应图无向图G=(V,E)的生成邻接矩阵W。如果第i个机器人能够测量第k个机器人的相对位置,即存在eik∈E,那么wik=1。反之,如果第i个机器人不能够测量第k个机器人的相对位置,即那么wik=0。这里的wik表示矩阵W第i行第k列个元素。
定义复拉普拉斯矩阵L,



式(3)中∑(·)为求和符。
步骤4,设计复数拉普拉斯矩阵;
定义符号e为自然常数,将队形定义为通过复数理论可知,ejθ表...

【专利技术属性】
技术研发人员:邹超禹鑫燚欧林林徐靖陈磊黄睿
申请(专利权)人:浙江工业大学
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1