一种基于GT35球碗零件内表面制备TiN厚膜的方法技术

技术编号:26885970 阅读:21 留言:0更新日期:2020-12-29 15:44
本发明专利技术公开了一种基于GT35球碗零件内表面制备TiN厚膜的方法,将零件置于真空炉内抽真空并加热,随后向真空炉内通入氩气对球碗内表面进行氩离子刻蚀,完成氩离子刻蚀后开启钛靶在刻蚀后的球碗内表面镀打底层,打底层将球碗零件内表面全覆盖后钛靶继续工作,并开始通入非饱和量的氮气沉积过渡层,氮气通入量随沉积时间阶梯增加,形成钛和氮化钛共存的过渡层,沉积时间随氮气通入量的增加而延长,当过渡层厚度大于等于10μm后开始持续通入饱和量的氮气沉积形成氮化钛层,该氮化钛层大于等于6μm后即可冷却出炉。

【技术实现步骤摘要】
一种基于GT35球碗零件内表面制备TiN厚膜的方法
本专利技术涉及一种物理气相沉积工艺,尤其涉及针对GT35球碗零件内表面制备TiN厚膜的工艺方法。
技术介绍
在PVD行业中,TiN膜层由于柱状晶结构的影响,膜层内应力过大,一出现膜层开裂、脱落、起皮等缺陷引起膜层失效,采用常规工艺方法沉积的TiN膜层的厚度一般均在5μm以下,很难满足球碗要求的15μm以上膜层厚度要求。
技术实现思路
为了解决现有技术中的不足,提供一种膜层厚度能达到15微米以上且结合力好,膜层不易开裂、脱落、起皮的氮化钛镀膜方法:一种基于GT35球碗零件内表面制备TiN厚膜的方法,将零件置于真空炉内抽真空并加热,随后向真空炉内通入氩气对球碗内表面进行氩离子刻蚀,完成氩离子刻蚀后开启钛靶在刻蚀后的球碗内表面镀打底层,打底层将球碗零件内表面全覆盖后钛靶继续工作,并开始通入非饱和量的氮气沉积过渡层,氮气通入量随沉积时间阶梯增加,形成钛和氮化钛共存的过渡层,沉积时间随氮气通入量的增加而延长,当过渡层厚度大于等于10μm后开始持续通入饱和量的氮气沉积形成氮化钛层,该氮化钛层大于等于6μm后即可冷却出炉。进一步的,在氩离子刻蚀、镀打底层、沉积过渡层以及沉积氮化钛层时温度控制在360~400℃。进一步的,初始炉内压为4×10-5mbar,氩离子刻蚀、镀打底层以及沉积氮化钛层时炉内压均保持在3×10-2mbar;沉积过渡层分时分三次不同氮气量实施,氮气量通过炉内压控制,沉积过渡层时炉内压依次为6×10-3mbar、1×10-2mbar、2×10-2mbar,沉积过渡层时对应各炉内压的沉积时间分别为30分钟、60分钟、120分钟。进一步的,氩离子刻蚀电压为500V,镀打底层电流和电压分别为60A和200V,沉积过渡层电流和电压分别为80A和180V,沉积氮化钛层电流和电压分别为80A和180V。采用上面工艺重新设计膜层结构,通过控制过渡层成分和结构,抑制了膜层内应力,使膜层有更好的结合力,即使膜层厚度超过15μm也不会造成开裂、脱落、起皮的现象。具体实施方式本专利技术提供一种针对GT35球碗零件内表面进行氮化钛膜镀层的工艺方法,将零件置于真空炉内抽真空并加热,随后通入氩气对零件表面进行氩离子刻蚀,通过氩离子刻蚀将零件表面杂质去除便于后续镀膜,氩离子刻蚀完成后开启钛靶对球碗内表面镀打底层,当打底层将球碗内表面全覆盖(在具体实施例中一般要求厚度达到0.5±0.1μm)后通入氮气,氮气通入量随着过渡层的沉积时间阶梯性增加,氮气通入量越大成绩时间越长,但是在沉积过渡层时氮气通入量始终不会超过饱和量,这样过渡层实质为钛和氮化钛共存的形式,而且从打底层一侧起过渡层中氮化钛的比例呈层状逐渐增多,这样形成的过渡层即使厚度足够相邻层面的成分、结构和性能上接近的,从而获得更好的结合力,而且可以组织柱状晶随着膜层的增厚而长大,打断了柱状晶的成长,当过渡层厚度大于等于10μm后持续通入饱和的氮气沉积形成氮化钛层,该氮化钛层厚度大于等于6μm后即可冷却出炉。在上述工艺过程中(氩离子刻蚀、镀打底层、沉积过渡层以及沉积氮化钛层)真空炉内温度保持在360~400℃。以具体实施例做说明:在过渡层和氮化钛层沉积时通入氮气量通过炉内压控制,初始炉内压力为4×10-5mbar,氩离子刻蚀和镀打底层时炉内压力为3×10-2mbar,沉积过渡层时通过改变三次氮气通入量实现对过渡层的沉积,第一次通入氮气量使炉内压力保持在6×10-3mbar沉积时间为30分钟,第二次通入氮气量使炉内压力保持在1×10-2mbar沉积时间为60分钟,第三次通入氮气量使炉内压力保持在2×10-2mbar沉积120分钟,从而可以看出从打底层一侧的过渡层开始沉积过渡层时氮气通入量逐渐增加,而且不同的氮气通入量沉积时间也不同,从而使得过渡层内氮化钛的比例越来越高,在过渡层基础上沉积氮化钛层时通入的氮气量使炉内压保持在3×10-2mbar沉积180分钟。这里只给出了一种实施例来对本申请过渡层沉积的方法做具体的说明,当然具体实施过程中可以更具实际需求改变氮气通入量和沉积时间,最终要达到的目标保持过渡层从打底层一层氮化钛的比例逐渐提高。在上述工艺工程中氩离子刻蚀弧电电流为10A:弧电电压为:500V,镀打底层的弧电电流和弧电电压为分别为60A和200V,沉积过渡层弧电电流和弧电电压分别为80A和180V,沉积氮化钛层弧电电流和弧电电压分别为80A和180V。冷却出炉时温度要降至80℃以下。上面工艺中提到的厚度并非直接可测的,而是通过弧电电流和弧电电压、以及沉积时间来计算所得的大概数值。本文档来自技高网...

【技术保护点】
1.一种基于GT35球碗零件内表面制备TiN厚膜的方法,其特征在于:将零件置于真空炉内抽真空并加热,随后向真空炉内通入氩气对球碗内表面进行氩离子刻蚀,完成氩离子刻蚀后开启钛靶在刻蚀后的球碗内表面镀打底层,打底层将球碗零件内表面全覆盖后钛靶继续工作,并开始通入非饱和量的氮气沉积过渡层,氮气通入量随沉积时间阶梯增加,形成钛和氮化钛共存的过渡层,沉积时间随氮气通入量的增加而延长,当过渡层厚度大于等于10μm后开始持续通入饱和量的氮气沉积形成氮化钛层,该氮化钛层大于等于6μm后即可冷却出炉。/n

【技术特征摘要】
1.一种基于GT35球碗零件内表面制备TiN厚膜的方法,其特征在于:将零件置于真空炉内抽真空并加热,随后向真空炉内通入氩气对球碗内表面进行氩离子刻蚀,完成氩离子刻蚀后开启钛靶在刻蚀后的球碗内表面镀打底层,打底层将球碗零件内表面全覆盖后钛靶继续工作,并开始通入非饱和量的氮气沉积过渡层,氮气通入量随沉积时间阶梯增加,形成钛和氮化钛共存的过渡层,沉积时间随氮气通入量的增加而延长,当过渡层厚度大于等于10μm后开始持续通入饱和量的氮气沉积形成氮化钛层,该氮化钛层大于等于6μm后即可冷却出炉。


2.根据权利要求1所述的一种基于GT35球碗内表面制备TiN厚膜的方法,其特征在于:在氩离子刻蚀、镀打底层、沉积过渡层以及沉积氮化钛层时温度控制在360~400℃。

【专利技术属性】
技术研发人员:赵显伟毕新儒
申请(专利权)人:陕西航天时代导航设备有限公司
类型:发明
国别省市:陕西;61

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1