当前位置: 首页 > 专利查询>同济大学专利>正文

相对位置可调谐的二维通带通道滤光片制造技术

技术编号:2669394 阅读:260 留言:0更新日期:2012-04-11 18:40
本发明专利技术提供了一种能够在一个双通道滤光片上独立调整两个通道相对位置的设计方法,采用了基于Fabry-Perot标准具的双对称结构。与传统的窄带滤光片不同,它通过几个中间层的厚度的连续变化来实现对两个通道的位置进行独立的连续的调整,克服了通道位置调整所引起的位置相干现象。本发明专利技术介绍了滤光片的设计思路和具体的结构设计,以及在此设计思想下所计算出的双通道带通滤光片的光谱特性等。所设计的滤光片可应用于光学探测仪器、空间技术等领域。

【技术实现步骤摘要】

本专利技术为一种光学滤光片器件设计方法,具体涉及一种二维双通道滤光片的设计。在光学仪器、天文、遥感等方面有应用前景。
技术介绍
传统的多通道带通滤光片一般有以下两种1、基于Fabry-Perot标准具的多通道带通滤光片最典型的多通道带通滤光片为Fabry---Perot标准具结构。该滤光片为一对称结构,两端为反射层,中间为间隔层,经过反射层的多次反射,通过恰当选取间隔层的物理厚度,该结构可以得到具有多通道透过特性的带通滤光片,但由于所有通道的位置都与这一个间隔层的厚度有关系,这些通道的位置变化是相干的。因此,无法用此结构设计出通道相对位置可调整的滤光片。2、Rugate类型的多通道带通滤光片从设计的角度来讲,也许有着连续折射率结构的Rugate类型的多通道带通滤光片是最吸引人的,因为Rugate滤光片具有完美的数学变换形式。但是由于该类型的多通道带通滤光片所采用的介质要求为折射率渐变材料,因此尽管在理论上能够进行设计,但在镀制技术上,要比多层介质多通道带通滤光片困难得多。1987年S.John和E.Yablonovitch等人分别提出了光子晶体的概念。由于一维光子晶体在结构上类似于光学多层介质膜,因此从光子晶体的角度出发,通过对一维光子晶体光谱的形成机理,一维光子晶体中的电磁模密度和光子态密度的分析与研究,形成了许多新的技术。在一维光子晶体中插入缺陷层后引起晶体中光子态密度的变化,改变了一维光子晶体的禁带特性,并可以在光子禁带中形成通道。在此基础上,王利等人对一维光子晶体的异质结结构进行了研究。将两种不同介电常数的材料组成具有不同晶格常数的一维光子晶体,通过缺陷层的偶合组成具有掺杂的异质结结构,并利用异质结结构的带隙特点得到宽的截止带。由于杂质对异质结结构能带的调制,所以通过掺杂可在宽的截止带中得到两个窄的通带。它克服了传统窄带滤光片不能在一个宽截止带得到窄带滤光的缺点。并且通过调整缺陷层的位置以及大小,在宽禁带的背景上得到更多的透过通道。采用光子晶体概念设计窄带滤光片的一个优点是可以预先设计工作波段。原因是光子晶体具有“标度不变性”,如果只改变晶格常数,而维持其他各项参数不变,则光子晶体的能带结构的总体形状不发生改变,只是透过峰的峰位和截止带的位置发生相应移动。基于Fabry-Perot标准具的多通道带通滤光片以及上述的一维光子晶体的异质结结构难以独立调整各通道的相对位置,从而限制了双通道滤光片的应用范围。
技术实现思路
本专利技术的目的在于提供一种既具有通带通道,又能够在同一个滤光片上独立调整各个通道位置的二维通带通道窄带滤光片。本专利技术提出的通道相对位置可调谐的二维通带通道滤光片,是以Fabry---Perot标准具结构为基础的一种全新的设计方法,它在Fabry---Perot标准具结构的基础上利用双对称结构来实现。Fabry---Perot标准具结构中,如果间隔层两侧媒质的导纳相同,则透射率T为T=T1T2(1-R1R2)211+4R1R2(1-R1R2)sin212(φ1+φ2-2δ)---(1)]]>其中T1、T2、R1、R2分别为选定膜层两侧的透射率和反射率,φ1、φ2分别为两反射膜层的反射相移。由式(1)可知,若两反射膜层的T1、T2、R1、R2和反射相移φ1、φ2不变,这时能改变的量是选定膜层的有效位相厚度δ(δ=2πλnd).]]>当φ1+φ2-2δ=2kπ (k=±1,2,3) (2)时,整个膜系的透射率T达最大值由Fabry---Perot标准具结构可以看出来,在此对称结构中,间隔层的插入引起了光子晶体中光子态密度和电磁波膜的变化,其两侧的反射层的多次反射而形成通道。由此可见,一个对称结构就可以形成一个独立的通道系列,通道的数目和位置随间隔层的厚度变化而变化。而利用基于Fabry---Perot标准具的双对称结构,通过调整几个缺陷层厚度可以实现双通道相对位置的独立调整。但由于此双对称结构的缺陷层厚度为常数,因此膜系一旦制作完毕,则两个通道的位置也就确定了下来,再也无法进行调整。因此在保证双对称的基础上,另膜系的几个缺陷层的厚度随位置的变化而改变,这样通过移动入射光束与虑光片的相对位置就可以对通道的位置进行调整。基于这种设计思想,采用了将两种不同介电常数的材料组成具有双对称结构的滤光片。如图1所示,其中H、L,分别为高低折射率材料的1/4波长光学厚度,H=nHdH=L=nLdL=λ/4,nL=1.44、nH=2.3分别为两种材料的折射率;dH、dL分别为与1/4波长光学厚度对应的两种材料的物理厚度。首先由高低折射率材料构成两个Fabry---Perot滤光片对称结构,然后由这两个结构又组成一个新的对称结构,这一结构称为双对称结构。其中,膜系的缺陷层的厚度不是常数,通过刻蚀或者在镀制过程中加入补偿板来改变中间层厚度,使得缺陷层的厚度随着位置的变化而改变,本专利技术以缺陷层为立体直角三角形来进行说明。本专利技术称中间的一个缺陷层为D层,其余四个缺陷层为C层,四个C层的厚度变化始终关于D层保持对称。本专利技术以缺陷层为立体直角锲形来进行说明。C层和D层都为锲形,且两个锲形在膜平面内保持垂直在坐标平面上,C层的厚度随X轴的增加而增加,D层的厚度随着Y轴的增加而增加。这样就可以通过移动入射光束与基板的相对位置来对双通道虑光片中的任何一个通道的位置进行独立的调谐。本专利技术中,两种不同介电常数的材料可选用SiO2和TiO2等。本专利技术是一种采用全介质结构的二维双通道窄带滤光器件。它采用基于Fabry---Perot标准具的双对称结构,来实现二维方向上两个通道系列位置的独立连续变化;在保证双对称结构的基础上改变缺陷层C和D的厚度,可以在同一个滤光片上实现对双通道中的任何一个通道的位置进行独立的调谐。由于设计中缺陷的厚度变化在纳米量级而滤光片的尺度在厘米量级,因此我们假设中间层厚度的变化并不改变入射光束的入射角,即入射光束均为垂直入射。由于中间层厚度的变化会导致通道宽度的大小会与入射光束的大小之间相互关联,为了简化计算,假设入射光束大小可以忽略不计。附图说明图1本专利技术所设计的对称膜系结构的纵切面局部示意图和缺陷层的结构示意图。C层的厚度随X轴的增加而增加,D层的厚度随着Y轴的增加而增加。图2在X轴方向上适当的移动入射光束(主要沿X轴方向移动,为了保证通道位置不发生变化可在Y轴方向上进行调整),可以在通道的位置不变的情况下调整通带的位置。图示的几组图形的c和d的值分别为c=1.4H、d=0.8L,c=1.5H、d=0.7435L,c=1.6H、d=0.698L,c=1.7H、d=0.659L,c=1.8H、d=0.624L。随着c由1.4增加到1.8适当调整d,左边的通带位置逐步右移,而右边的通道始终在原先的位置保持不动。图3在X轴方向上适当的移动入射光束,可以在通道位置不变的情况下调整通带的位置。图示的几组图形中保持c=1.4H不变,随着d的值由0.2L增加到0.7L,左边的通带位置保持基本不动。而右边的通道逐步向右移动。图4在滤光片上适当的移动入射光束,可以使通道和本文档来自技高网
...

【技术保护点】
一种通道相对位置可调谐的二维通带通道滤光片,其特征在于:薄膜的硬膜系材料为TiO↓[2]和SiO↓[2]组合,组成膜系的结构为以Fabry-Perot结构为基础的双对称结构滤光片膜层,结构为:(HL)↑[2]cH(LH)↑[2]L( HL)↑[2]cH(LH)↑[2]dL(HL)↑[2]cH(LH)↑[2]L(HL)↑[2]cH(LH)↑[2]1/2cL。其中通过刻蚀或者在镀制过程中采用补偿的办法,使得c层和d层的厚度在两维方向上发生连续变化。

【技术特征摘要】

【专利技术属性】
技术研发人员:吴永刚田国勋王占山焦宏飞张莉戚同非
申请(专利权)人:同济大学
类型:发明
国别省市:31[中国|上海]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1