极弱微磁场的测量方法技术

技术编号:2636591 阅读:265 留言:0更新日期:2012-04-11 18:40
一种极弱微磁场的测量方法,特别适用于磁通量小于10↑[-15]韦伯的弱磁场的测量。待测样品是由磁性材料构成,厚度小于或等于500纳米。首先将待测样品置于电子显微镜中拍摄待测样品的电子全息图。再将在电子显微镜中拍好的带有待测样品电子全息图的电子干板置放在光学马赫-陈特尔干涉仪上进行位相差放大,获得干涉图。读取干涉图中的干涉条纹数就可以获得待测样品的磁通量。与在先技术相比,本发明专利技术测量方法的测量灵敏度较高,能够测量漏磁场,极弱微磁场,以及进行阿哈拉诺夫-玻姆效应的验证。(*该技术在2022年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术是关于一种极弱微磁场(磁通量小于10-15韦伯)的测量方法,特别是涉及电子全息术测量弱磁场。
技术介绍
对磁现象进行观察和利用,是人类最古老的
之一。我们中国人远在公元之前三世纪,就使用了磁罗盘,后来又把它用于航海业。近年来,磁测量技术获得了较大的发展,促进这种发展的主要有两个原因。(1)现实生活的需要,例如对石油和天然气采用磁力勘探,宇宙、超导现象、生物磁场等研究,阿哈拉诺夫-玻姆(简称A-B)效应验证;(2)现代物理学的成就提供了一些新的测量方法的可能性。在先技术中对弱磁场测量有两种方法1.利用各种形状的线圈与电流计相结合,这种方法被广泛地应用于地磁测量、宇宙测量、勘探矿床等。2.利用各种磁强计。上述两种方法的主要缺点是灵敏度低,测量灵敏度为1×10-10~10-12韦伯,对于许多特殊应用,例如上述的A-B效应验证和漏磁场测量都不能满足要求。
技术实现思路
本专利技术针对上述在先技术中的缺点,提出一种用电子全息技术测量极弱微磁场的方法。主要是测量磁场的磁通量。本专利技术的测量方法中所用的电子全息技术是两步成像过程,第一步以干涉条纹的形式将物体波面记录下电子全息图;第二步利用衍射原理,将电子全息图中的信息进行解码,显然这种成像是将物像在空间和时间上分离。第一步在记录时用一种波长,本专利技术中采用0.03nm;第二步重现可用另一种波长,本专利技术中用632.8nm。在第二步重构过程中还可进行各种技术处理。电子全息的特点不仅在于电子的德布罗意波长很短(100KV电子的波长约为0.03nm),能获得高分辨率的重现像,更重要的是电子是带电粒子,当电子束通过电磁场区域时,电子波的位相携带有电磁场的信息,因而是探测电磁场的有力工具。本专利技术的测量方法的具体做法是<1>由磁性材料构成的待测样品,为了能使电子束穿过待测样品,要将待测样品减薄到小于或等于500nm(纳米)厚度;<2>将待测样品放在电子显微镜中拍摄待测样品的电子全息图;<3>将拍摄好的带有待测样品电子全息图的电子干板置放在光学马赫-陈特尔干涉仪上进行位相差放大,获得干涉图,读取干涉图中的干涉条纹数目N,求得待测样品的磁通量φ,φ=(N-1)h2ne---(1)]]>式中N为干涉条纹数目,n为位相差放大次数,h为普朗克常数,e为电子电荷。关于电磁场影响电子波的位相,可用量子理论解释。当电子经过电磁场后,位相变化为Δ(x0y0)=(π/λVa)∫V(x0,y0,z)ds-(2πe/h)∫A(x0,y0,z)dz(2)式中λ为电子的德布罗意波波长,Va为电子的加速动能,V为静电势,h为普朗克常数,e为电子电荷,A为磁矢势。通常电子的偏转角很小,许多理论和实验已经证明了积分可沿电子的入射方向Z轴进行,则Δ(x0,y0)=(π/λVa)∫V(x0,y0,z)dz-(2πe/h)∫Az(x0,y0,z)dz(3)式(3)是电子全息技术中最重要的公式,∫Az(x0,y0,z)dz反映了电子全息技术的特点公式(3)中第一项反映了电场信息,第二项中反映了磁场信息。电子波的位相包含了电磁场的信息。和光学全息相似,在重现过程中提取波前的位相信息采用了等高图法。等高图法就是沿重现物波前的Z轴方向再叠加一相干平行光束,其干涉图就是等高图。在纯磁场情况下,任意两点位相差Δ=-(2πe/h)∮Azdz=-(2πe/h)∫B·dS (4)其中B是磁感应强度,S是由环路围的面积。从公式(4)可以看出,如果待测样品厚度均匀,磁场为平面场,那么等高线代表磁力线,只与磁场有关。相邻两干涉条纹之间的磁通量恒为h/e,与电子的加速电压等电场的参数无关。则在等高图上包含的两相邻干涉条纹之间的磁通量h/e相加起来即为待测样品的磁通量φ。为了测量精确,可以将位相差放大n次,即重复n次。由此获得待测样品的磁通量φ=(N-1)h2ne]]>。与在先技术相比,本专利技术测量方法的测量灵敏度较高,能够测量漏磁场,极弱微磁场,以及进行阿哈拉诺夫-玻姆效应的验证。附图说明图1为上述本专利技术具体做法中第二步,将待测样品置放在电子显微镜中的示意2为上述本专利技术具体做法中第三步,将在第二步中获得的待测样品的电子全息图的干板置放在光学马赫-陈特尔干涉仪中的示意图具体实施例方式<1>按着上述的具体做法,待测样品2是铁磁材料构成的,待测样品2的厚度为500nm。<2>拍摄电子全息图将上述准备好的待测样品置放在如图1所示的电子显微镜中进行。电子显微镜主要包括电子束源1,放置待测样品2的样品室,电磁物镜3,静电双棱镜4,放大镜5,接收器6和用来记录电子全息图的电子干板7。电子全息图是对参考光和物光干涉图形的记录,这不仅要求电子显微镜有足够高的空间相干性和时间相干性,还要求仪器有足够的稳定性,因此在打开电子显微镜以后,须稳定一段时间后再将待测样品2放入样品室。待测样品2置于样品室,仅使电子束1的一半通过待测样品2作为物束,另一半不经待测样品的作为参考束,经静电双棱镜4偏转后在其下方两束重合,产生含有磁场信息的干涉条纹。在电子干板7上记录了含待测样品磁场信息的电子全息图。为了防止电磁物镜3的磁场对待测样品2磁场的影响,工作时关掉电磁物镜3。在电子显微镜中静电双棱镜4这个装置是有两块板状接地板与中央的丝状电极构成。丝的直径为0.35μm,用导电胶固定在一个框架上,并绝缘地架设在接地电极上,安装时要使细丝与接地电极平行,以保证细丝附近的场是对称的,丝上的电压从0-150V连续可调。电子全息图中的干涉条纹的间距可以由加在静电双棱镜4丝上的电压控制,通常50伏左右。但由于电子的德布罗意波长很短,只有0.03nm,所产生的干涉条纹间距很密,超过通常作为接收器7的电子干版的分辨率。即使具有这种超高分辨率的电子干板,当条纹间距小于可见光波长重现时,除了倏逝波以外,得不到任何信息。因此这个条纹间距必须经放大镜5放大。从分辨率的角度来看,干涉条纹间距至少要小于待测样品的分辨细节的三分之一。这就要求有一个合适的放大倍数。一般为30万倍。电子是带电粒子,易受外界杂散电磁场的干扰。因此,选择电子显微镜较高工作电压有利于电子干涉实验。本专利技术中选为100KV。一般电子显微镜上都带有作为接收器6的荧光屏。当荧光屏上看到清晰的电子全息图时,再放入电子干板7拍摄电子全息图。<3>将拍摄好的带电子全息图的电子干板7经暗室处理好以后放在图2所示的底片架13上进行重构。重构是在光学马赫-陈特尔干涉仪上进行的,如图2所示。本专利技术中所使用的光学马赫-陈特尔干涉仪,含有氦-氖激光光源8,半透半反镜9、12,全反镜10、11,透镜13,光栏14和接收器15。由输出波长为632.8nm的氦-氖激光光源8发射的光束经第一半透半反镜9后分成A、B两束光。光束B经全反镜10和半透半反镜12后照明电子干板7上的电子全息图。光束A经全反镜11和第二半透半反射镜12后也照明电子干板7上的电子全息图。A、B束分别被电子全息图衍射,各自产生0级、±1级衍射,分别调整全反射镜10、11,本文档来自技高网...

【技术保护点】
一种极弱微磁场的测量方法,其特征在于具体测量方法是:〈1〉准备由磁性材料构成的待测样品,待测样品的厚度小于或等于500nm;〈2〉将上述待测样品置于电子显微镜中拍摄待测样品的电子全息图;〈3〉将上述在电子显微镜中拍摄到的带有待测 样品电子全息图的电子干板置放在光学马赫-陈特尔干涉仪上进行位相差放大,获得干涉图,读取干涉图中的干涉条纹数目N,求得待测样品的磁通量φ,φ=(N-1)h/2↑[n]e式中h为普朗克常数,e为电子电荷,n为位相差放大次数。

【技术特征摘要】

【专利技术属性】
技术研发人员:陈建文高鸿奕谢红兰徐至展
申请(专利权)人:中国科学院上海光学精密机械研究所
类型:发明
国别省市:31[中国|上海]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1