一种金属极小曲面梯度多孔散热元件及其增材制造方法技术

技术编号:25165098 阅读:35 留言:0更新日期:2020-08-07 20:54
本发明专利技术属于多孔结构增材制造领域,并具体公开了一种金属极小曲面梯度多孔散热元件及其增材制造方法,包括如下步骤:S1根据多孔结构特性,确定其初始参数;根据初始参数得到多孔结构空间内部各点的体积分数和孔隙大小,获得各点处空间函数,根据空间函数进行数学建模,结合Swartz Diamond极小曲面隐函数,拟合得到多孔结构三维模型;S2根据多孔结构三维模型,采用金属粉末通过增材制造得到多孔结构;对多孔结构进行原位热处理、分离、表面喷砂,得到金属极小曲面梯度多孔散热元件。本发明专利技术克服了传统多孔结构热力学性能单一难以变化的缺点,制造出的轻量化金属梯度多孔结构具有良好的散热性、优异的力学性能、较强的可设计性。

【技术实现步骤摘要】
一种金属极小曲面梯度多孔散热元件及其增材制造方法
本专利技术属于多孔结构增材制造领域,更具体地,涉及一种金属极小曲面梯度多孔散热元件及其增材制造方法。
技术介绍
金属多孔结构材料由于具有质量轻、比强度高、抗冲击能力强、能量吸收率高等优异的综合性能,在航空航天、交通运输、汽车船舶等领域有很大应用前景。除了有较好的机械承载性能,具有高导热系数的金属多孔结构本身也是优良的热交换器,通透性的开孔设计和较大孔隙率可增加其散热面积,有利于孔穴内部强制对流换热。因此金属多孔结构可实现承载-散热的有机结合,应用于飞机器、高功率电子器件、航空精密仪器零件等的散热冷却。目前研究的金属多孔结构多为均匀点阵结构,传统的点阵结构大多由直杆组成,由于在杆间结点位置存在急转容易产生应力集中从而导致失效。另外,在增材制造过程中,传统点阵结构中的直杆由于缺乏支撑很容易坍塌而使成形失败。同时,随着各轻量化设计领域对提高产品综合散热性能以及特定化场景应用的要求逐步提升,具有单一的机械性能且易失效的周期性均匀点阵多孔结构已逐渐无法满足复杂场景中的高性能散热构件的需求。本文档来自技高网...

【技术保护点】
1.一种金属极小曲面梯度多孔散热元件的增材制造方法,其特征在于,包括如下步骤:/nS1根据待成形多孔结构的特性,确定其初始参数;根据初始参数得到多孔结构空间内部各点的体积分数和孔隙大小,进而获得各点处空间函数,根据空间函数进行数学建模,进而结合Swartz Diamond极小曲面隐函数,拟合得到极小曲面连续梯度多孔结构三维模型;/nS2根据极小曲面连续梯度多孔结构三维模型,采用金属粉末通过增材制造得到多孔结构;对多孔结构依次进行原位热处理、分离、表面喷砂,得到金属极小曲面梯度多孔散热元件。/n

【技术特征摘要】
1.一种金属极小曲面梯度多孔散热元件的增材制造方法,其特征在于,包括如下步骤:
S1根据待成形多孔结构的特性,确定其初始参数;根据初始参数得到多孔结构空间内部各点的体积分数和孔隙大小,进而获得各点处空间函数,根据空间函数进行数学建模,进而结合SwartzDiamond极小曲面隐函数,拟合得到极小曲面连续梯度多孔结构三维模型;
S2根据极小曲面连续梯度多孔结构三维模型,采用金属粉末通过增材制造得到多孔结构;对多孔结构依次进行原位热处理、分离、表面喷砂,得到金属极小曲面梯度多孔散热元件。


2.如权利要求1所述的金属极小曲面梯度多孔散热元件的增材制造方法,其特征在于,所述初始参数包括空间边界、尺寸、体积分数和比表面积。


3.如权利要求2所述的金属极小曲面梯度多孔散热元件的增材制造方法,其特征在于,所述初始参数的确定方式具体为:根据散热元件的预留位置,确定多孔结构的空间边界及尺寸;根据散热元件所针对的热源器件的功率及实际工况确定散热通量,根据散热通量通过仿真计算求得多孔结构的比表面积;根据轻量化和力学性能需求,确定多孔结构的体积分数。


4.如权利要求1所述的金属极小曲面梯度多孔散热元件的增材制造方法,其特征在于,所述S1中,根据初始参数通过三维建模算法得到多孔结构空间内部各点的体积分数和孔隙大小,所述三维建模算法采用平滑算法。


5.如权利要求1所述的金属极小...

【专利技术属性】
技术研发人员:闫春泽吴思琪杨磊史玉升黄耀东苏瑾李昭青杨潇陈鹏伍宏志刘主峰
申请(专利权)人:华中科技大学
类型:发明
国别省市:湖北;42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1