一种基于混沌灰狼优化的无人机编队控制方法技术

技术编号:24994869 阅读:57 留言:0更新日期:2020-07-24 17:57
本发明专利技术提出了一种基于混沌灰狼优化的无人机编队控制方法,建立了无人机编队控制的分布式MPC框架,其中每个无人机仅与邻居共享信息,降低通讯要求与计算复杂性;将混沌优化算法与灰狼优化算法相结合,提高算法性能。将算法与分布式MPC相结合,求解FHOCP,从而实现无人机编队控制。

【技术实现步骤摘要】
一种基于混沌灰狼优化的无人机编队控制方法
本专利技术属于无人机协同控制
,尤其涉及一种基于混沌灰狼优化的无人机编队控制方法。
技术介绍
无人机(UnmannedAerialVehicle,UAV)在军事和民用领域具有多种应用,例如侦察、监视、精确农业、货物运输和森林消防。目前,战争越来越体现出“无人化”趋势,无人机技术的发展势头也越来越好,与单架无人机相比,多无人机编队拥有“自愈”能力、环境适应度高、任务执行强。多无人机系统在复杂任务中具有更好的性能,例如在侦查方面,无人机编队有利于建立三维的战场模型;在空战中,可进行协同作战,扩大杀伤范围,提高命中率。无人机编队可以多无人机系统探测,定位和感知的能力,从而有助于空中加油和自组织等任务的进行。为了实现无人机编队的自主飞行和复杂任务的执行,需要解决无人机编队控制问题。编队飞行一般可分为集结、队形保持与重构几个阶段,包括过程中对扰动冲突的考虑。无人机编队控制的常用方法包括:领航跟随者方法(Leader-Follower)、基于行为法、虚拟结构法和基于一致性方法等,各有优劣,可以根据任务需要和环境进行选取。其中领航跟随者方法是编队控制中的常见方法,它指定一架飞机为领航者,其他飞机为跟随者,领航者按参考轨迹进行飞行时,作为跟随者的飞机按一定策略跟随领航者无人机。基于行为法是指对定义的几种无人机的基本行为(如避障、跟随等)进行加权,从而得到编队控制方法,系统中的每个个体都可依据自身决策来协同其他个体完成任务。模型预测控制(ModelPredictiveControl,MPC)在早期的探索中,在一些工业部门中应用,用于解决多变量控制的、需要在线求解的有约束动态最优问题。但基于对控制成本和控制参数的考虑,早期并没有的到足够的重视,直到2000年Mayne和Rawlingst等人利用李雅普诺夫(Lyapunov)稳定性理论,采用最优控制解决了这些问题,实现了模型预测控制的线性或非线性的控制约束及稳定性保证,使得模型预测控制的理论有了较大的进步,成为了继PID控制之后的先进控制技术之一。但是由于模型预测控制其本身的局限,对于在线求解约束优化问题,其计算量大,运算时间与设备要求限制了其应用空间。在实际中,用集中式模型预测控制来整体求解一些较大规模的约束优化类问题很难实现,可以采用分布式模型预测控制(Distributedmodelpredictivecontrol,DMPC)来降低计算的复杂性。分布式MPC比传统MPC处理状态和控制约束的多输入多输出系统的能力更强,它将原控制问题转化为控制一组原系统的子系统的问题,构建多个具有信息交互的分布式预测平台,共同实现优化任务,很大程度上降低了计算量,提高了系统的鲁棒性,能够更好的解决控制问题。因此对于无人机编队控制,可采用分布式MPC方法。灰狼优化算法(GreyWolfOptimization,GWO)是一种群智能算法,其灵感来源于灰狼的社会行为,灰狼的社会等级制度和狩猎机制。混沌优化算法(ChaosOptimizationAlgorithm,COA)是一种受混沌现象启发的全局优化算法,混沌现象表现了不确定和不可预测的行为。
技术实现思路
为了提高GWO的全局优化能力和收敛速度,在GWO的参数设置和优化机制中采用混沌优化策略,提出一种混沌灰狼优化算法(ChaoticGreyWolfOptimization,CGWO)结合MPC,求解有限时域优化控制问题(FiniteHorizonOptimalControlProblem,FHOCP),解决无人机编队控制问题。具体的,本专利技术建立了无人机编队控制的分布式MPC框架,其中每个UAV仅与邻居共享信息,降低通讯要求与计算复杂性;将混沌优化算法与灰狼优化算法相结合,提高算法性能,并用于对FHOCP的求解,从而实现无人机编队控制。本专利技术的具体技术方案如下:一种基于混沌灰狼优化的无人机编队控制方法,其特征在于,包括以下步骤:S1:建立无人机编队模型:设N架无人机做定高飞行,即处在相同的二维平面中,每架无人机能够看成一个质点,每架无人机的运动模型为:其中,pi=[pix,piy]T是无人机i的位置,pix是无人机i在x轴上的坐标,piy是无人机i在y轴上的坐标,是pix的一阶导数,表示无人机i在x轴方向的速度,是piy的一阶导数,表示无人机i在y轴方向的速度,vi和θi是无人机i的飞行速度和航向角,是θi的一阶导数,是vi的一阶导数,ωi和ai表示无人机i的角速度和加速度;S2:建立通讯限制情况下无人机动力学方程:对非线性的模型预测控制问题,无人机动力学方程表示为:其中,是系统状态轨迹,n是状态量的数量,是z(t)的一阶导数,是系统控制轨迹,m是控制量的数量,t0是初始时间,z0是系统的初始状态轨迹;对分布式模型预测控制问题,无人机i∈V={1,2,...,N}的解耦时不变非线性动力学等效为:则上述系统向量表示为:z=(z1,z2,...,zN),u=(u1,u2,...,uN),f(z,u)=(f1(z1,u1),f2(z2,u2),...,fN(zN,uN)),是zi(t)的一阶导数,V是N架无人机的集合;在通讯受限情况下,设无人机i只能与集合中的邻居无人机交流,在集合中的无人机数量为Ni,对于编队中不是邻居的无人机,无人机i只能间接的通过邻居接收到相应信息,表示不是无人机i邻居的无人机的集合;在分布式模型预测控制中,无人机j是无人机i的邻居无人机,无人机i的邻居无人机的控制轨迹和状态轨迹表示为:u-i(t)={uj(t)}和z-i(t)={zj(t)},动力学方程为:无人机k是无人机i的非邻居无人机,是无人机j的邻居无人机的集合,无人机i的非邻居无人机的控制轨迹和状态轨迹表示为u~i(t)={uk(t)}和z~i(t)={zk(t)},动力学方程为:其中,是z-i(t)的一阶导数;是z~i(t)的一阶导数;S3:初始化混沌灰狼优化算法的参数:设狼群总数量为Ng,搜索空间为D维,最大迭代次数为tmax;S4:设计混沌灰狼优化算法:S4-1:灰狼优化算法;设第ig只狼的位置向量为ig∈{1,2,...,Ng},代表狼在D维空间中的位置,第ig只狼的狩猎过程表示为:Dig=|Cig·Xp(tg)-Xig(tg)|(6)Xig(tg+1)=Xp(tg)-Aig·Dig(7)其中,tg为当前迭代次数,Xig(tg)为第ig只狼在当前迭代中的位置向量,Xig(tg+1)为第i只狼在下次迭代中的位置向量,Dig是距离矢量,Xp(tg)表示猎物的位置向量,也代表最优解,系数向量Aig和Cig通过以下表达式获得:Aig=2a·r1-a(8)Cig=2·r2(9)其中,r1和r2是D维空间中[0,1]间的随机向量,a=2-2tg/tmax,tmax为最大迭代次数;认为狼群首领本文档来自技高网
...

【技术保护点】
1.一种基于混沌灰狼优化的无人机编队控制方法,其特征在于,包括以下步骤:/nS1:建立无人机编队模型:/n设N架无人机做定高飞行,即处在相同的二维平面中,每架无人机能够看成一个质点,每架无人机的运动模型为:/n

【技术特征摘要】
1.一种基于混沌灰狼优化的无人机编队控制方法,其特征在于,包括以下步骤:
S1:建立无人机编队模型:
设N架无人机做定高飞行,即处在相同的二维平面中,每架无人机能够看成一个质点,每架无人机的运动模型为:



其中,pi=[pix,piy]T是无人机i的位置,pix是无人机i在x轴上的坐标,piy是无人机i在y轴上的坐标,是pix的一阶导数,表示无人机i在x轴方向的速度,是piy的一阶导数,表示无人机i在y轴方向的速度,vi和θi是无人机i的飞行速度和航向角,是θi的一阶导数,是vi的一阶导数,ωi和ai表示无人机i的角速度和加速度;
S2:建立通讯限制情况下无人机动力学方程:
对非线性的模型预测控制问题,无人机动力学方程表示为:



其中,是系统状态轨迹,n是状态量的数量,是z(t)的一阶导数,是系统控制轨迹,m是控制量的数量,t0是初始时间,z0是系统的初始状态轨迹;
对分布式模型预测控制问题,无人机i∈V={1,2,...,N}的解耦时不变非线性动力学等效为:



则上述系统向量表示为:z=(z1,z2,...,zN),u=(u1,u2,...,uN),f(z,u)=(f1(z1,u1),f2(z2,u2),...,fN(zN,uN)),是zi(t)的一阶导数,V是N架无人机的集合;
在通讯受限情况下,设无人机i只能与集合中的邻居无人机交流,在集合中的无人机数量为Ni,对于编队中不是邻居的无人机,无人机i只能间接的通过邻居接收到相应信息,表示不是无人机i邻居的无人机的集合;
在分布式模型预测控制中,无人机j是无人机i的邻居无人机,无人机i的邻居无人机的控制轨迹和状态轨迹表示为:u-i(t)={uj(t)}和z-i(t)={zj(t)},动力学方程为:



无人机k是无人机i的非邻居无人机,是无人机j的邻居无人机的集合,无人机i的非邻居无人机的控制轨迹和状态轨迹表示为和z~i(t)={zk(t)},动力学方程为:



其中,是z-i(t)的一阶导数;是z~i(t)的一阶导数;
S3:初始化混沌灰狼优化算法的参数:
设狼群总数量为Ng,搜索空间为D维,最大迭代次数为tmax;
S4:设计混沌灰狼优化算法:
S4-1:灰狼优化算法;
设第ig只狼的位置向量为代表狼在D维空间中的位置,第ig只狼的狩猎过程表示为:
Dig=|Cig·Xp(tg)-Xig(tg)|(6)



其中,tg为当前迭代次数,Xig(tg)为第ig只狼在当前迭代中的位置向量,Xig(tg+1)为第i只狼在下次迭代中的位置向量,Dig是距离矢量,Xp(tg)表示猎物的位置向量,也代表最优解,系数向量Aig和Cig通过以下表达式获得:
Aig=2a·r1-a(8)
Cig=2·r2(9)
其中,r1和r2是D维空间中[0,1]间的随机向量,a=2-2tg/tmax,tmax为最大迭代次数;
认为狼群首领更了解猎物的位置,最优的前三个解是狼α,β和δ,它们作为狼群的首领,距离猎物的位置更近,将首领狼的位置向量作为猎物的位置向量带入式(6),(7)中,其他的狼跟随首领进行狩猎的过程表示为:






其中,Xα(tg),Xβ(tg)和Xδ(tg)是狼α,β和δ的位置向量,X(1)(tg+1),X(2)(tg+1)和X(3)(tg+1)是依据三个首领狼的作为猎物位置时计算出的下次迭代的位置向量,Aα,Aβ,Aδ以及Cα,Cβ,Cδ分别是狼α,β和δ作为猎物位置时的系数向量;
S4-2:混沌灰狼优化算法;
初始化时,用混沌映射生成按适应度值排序的2×Ng个解,并选择奇数项作为初始解,同时,a也由混沌算子产生;
将每个个体的最优解包括在搜索机制中:



其中,表示第ig只狼的个体最优解,为下次迭代的位置向量,为当前迭代的位置向量,Ab和C...

【专利技术属性】
技术研发人员:吴坤张田蔡志浩赵江王英勋
申请(专利权)人:北京航空航天大学
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1