一种抗静电外延结构制造技术

技术编号:24588023 阅读:29 留言:0更新日期:2020-06-21 02:10
本实用新型专利技术公开了一种抗静电外延结构,所述外延结构包括衬底,依次设于衬底上的第一半导体层、有源层和第二半导体层,所述第二半导体层包括P型AlGaN层、P型GaN层和高静电层,所述P型GaN层设置在P型AlGaN层上,所述高静电层插入在P型GaN层中;所述高静电层包括无掺杂GaN层和/或低掺杂GaN层,所述无掺杂GaN层由掺杂浓度为零的GaN制成,所述低掺杂GaN层由p‑GaN制成,掺杂浓度为a;所述P型GaN层由p‑GaN制成,掺杂浓度为b,a<b。本实用新型专利技术在P型GaN层中插入高静电层,有效提高外延结构的抗静电能力。

An antistatic epitaxial structure

【技术实现步骤摘要】
一种抗静电外延结构
本技术涉及发光二极管
,尤其涉及一种抗静电外延结构。
技术介绍
氮化镓(GaN)是宽禁带材料,电阻率高,GaN基LED芯片在生产、运送过程中产生的静电电荷不易消失,累积到一定程度可以产生很高的静电电压。蓝宝石衬底的LED芯片正负电极位于芯片同一侧,间距很小,因此对静电的承受能力很小,极易被静电击穿失效,影响器件的寿命。目前传统的GaN基LED外延生长结构过程为:500℃先在蓝宝石衬底上生长一层低温GaN缓冲层;然后接着在1100℃下生长一层未掺杂的高温GaN;再接着高温生长一层掺杂SiH4的n型GaN层,这一层提供复合发光的电子;然后接着在750~850℃下生长几个周期的GaN/InGaN的量子阱和量子垒作为LED的发光层,该层是GaN基LED外延的核心部分;然后在950℃左右生长掺杂Mg的P型AlGaN层,起到阻挡电子的作用;最后在1000℃左右生长一层掺杂Mg的P型GaN层,这一层提供复合发光的空穴;最后是退火过程。目前LED外延生长过程中,有源层多采用几个周期结构GaN/InGaN量子阱垒区,电子本文档来自技高网...

【技术保护点】
1.一种抗静电外延结构,包括衬底,依次设于衬底上的第一半导体层、有源层和第二半导体层,其特征在于,所述第二半导体层包括P型AlGaN层、P型GaN层和高静电层,所述P型GaN层设置在P型AlGaN层上,所述高静电层插入在P型GaN层中;/n所述高静电层包括无掺杂GaN层和/或低掺杂GaN层,所述无掺杂GaN层由掺杂浓度为零的GaN制成,所述低掺杂GaN层由p-GaN制成,掺杂浓度为a;/n所述P型GaN层由p-GaN制成,掺杂浓度为b,a<b。/n

【技术特征摘要】
1.一种抗静电外延结构,包括衬底,依次设于衬底上的第一半导体层、有源层和第二半导体层,其特征在于,所述第二半导体层包括P型AlGaN层、P型GaN层和高静电层,所述P型GaN层设置在P型AlGaN层上,所述高静电层插入在P型GaN层中;
所述高静电层包括无掺杂GaN层和/或低掺杂GaN层,所述无掺杂GaN层由掺杂浓度为零的GaN制成,所述低掺杂GaN层由p-GaN制成,掺杂浓度为a;
所述P型GaN层由p-GaN制成,掺杂浓度为b,a<b。


2.如权利要求1所述的抗静电外延结构,其特征在于,所述高静电层的厚度为P型GaN层的厚度的40%~50%,所述高静电层的厚度为20~100nm。


3.如权利要求2所述的抗静电外延结构,其特征在于,所述高静电层将P型GaN层分为第一P型GaN层和第二P型GaN层,其中,第一P型GaN层的掺杂浓度为b1,第二P型GaN层的掺杂浓度为b2,b1≥b2。


4.如权利要求3所述的抗静电外...

【专利技术属性】
技术研发人员:仇美懿庄家铭
申请(专利权)人:佛山市国星半导体技术有限公司
类型:新型
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1