低功率启动并有电压监视功能的数控能量收集管理电路制造技术

技术编号:23990399 阅读:31 留言:0更新日期:2020-04-29 15:44
本发明专利技术公开了一种低功率启动并有电压监视功能的数控能量收集管理电路,将能量收集启动功率降低到了0.14μW,能够显著提高能量收集的灵敏度;本发明专利技术可用于微弱光照、低振动强度、微小温差等环境中的能量收集,而且本发明专利技术尤其适用于基于射频能量收集的场景中;经试验,本发明专利技术能够运行的最小射频输入功率‑22dBm@915MHz,能够有效扩展射频能量收集的空间范围;同时,通过增加电压监视功能,保证系统的用电正常。

Numerical control energy collection and management circuit with low power start and voltage monitoring function

【技术实现步骤摘要】
低功率启动并有电压监视功能的数控能量收集管理电路
本专利技术涉及微能量收集领域,更具体地说,涉及一种低功率启动并有电压监视功能的数控能量收集管理电路。
技术介绍
能量收集是实现无源物联网等低功耗电路系统长期免维护运行的一项关键技术。通过捕获环境中的这些能量,如照明、温差、振动和电磁波(射频能量),可以让低功耗电子器件正常工作。而在这些微功率能源中,来自射频发射器的能量具有独特的优势,包括随距离变化可预测和一致的功率,能够使得无源物联网远离电池和有线供电的束缚。环境射频能量如今可以从全球数百亿个无线发射器获得,而且发射器的数量还在不断增长,包括移动电话、手持无线电设备、移动基站以及电视/无线广播台等,捕获这类能量有助于创建各种新的无源物联网设备。目前,专门用于射频能量收集的专用集成电路/模块还比较少见,来自美国的Powercast、TI和比利时的E-Peas提供了目前为数不多的商业解决方案。P2110B是Powercast最具代表性的射频能量收集模块,启动电压1.25V,启动电流3.9μA,启动功率4.9μW,模块能够运行的最小射频输入功率-11dBm@915MHz。TI公司的BQ25504和BQ25505是最具代表性的能量收集芯片,启动电压分别是0.33V和0.6V,启动电流分别是45μA和25μA,启动功率均为15μW。AEM40940是E-Peas在2018年新推出的专用射频能量收集芯片,启动电压0.38V,启动电流7.9μA,启动功率仅为3μW。芯片能够运行的最小射频输入功率-19dBm@915MHz。同时,现有的微能量收集管理系统在进行工作时,系统负载芯片往往都是一直工作,在系统收集能量较慢时,很慢满足系统负载芯片的正常用电,从而导致系统工作异常。
技术实现思路
由于启动功率直接关系到(射频)能量收集的灵敏度,从而影响射频能量收集的有效范围。根据上述背景介绍,目前启动功率最小的能量收集解决方案也需要3μW。针对这一问题以及保证系统负载芯片用电正常,本专利技术提出了启动功率更小的一套解决方案——低功率启动并有电压监视功能的数控能量收集管理电路,将能量收集启动功率降低到了0.14μW。根据本专利技术的第一方面,本专利技术解决其技术问题,所采用的低功率启动并有电压监视功能的数控能量收集管理电路包含:第一储能器件,第一储能器件的一端接地,另一端用于连接RF转DC模块的输出端,其中RF转DC模块的输入端连接射频能量收集天线,用于将射频能量转换为直流电进行输出;第一P型开关管,S极连接所述第一储能器件的所述另一端;负载电阻,负载电阻的两端之间并联第一去耦电容,并联后一端接地,另一端连接第一P型开关管的D极;第一上拉电阻,一端连接所述第一储能器件的所述另一端;二极管,阳极连接第一上拉电阻的另一端,阴极连接第一P型开关管的D极,同时二极管的阳极连接第一P型开关管的G极;第一电压监视芯片,具有输入端口以及指示输出端口,输入端口连接第一P型开关管的D极,指示输出端口连接第一上拉电阻的所述另一端,指示输出端口用于第一电压监视芯片正常工作时,在所述输入端口输入的电压大于电压阈值VThreshold时,输出高电平,否则输出低电平,且在所述输入端口输入的电压小于第一电压监视芯片能够正常运行的最小工作电压时,处于高阻态;第二P型开关管,第二P型开关管的G极连接所述指示输出端口,S极连接所述第一储能器件的所述另一端;第一N型开关管,第一N型开关管的D极连接所述指示输出端口;输入电容,一端接地,另一端分别连接第二P型开关管的D极和第一N型开关管的S极;DC/DC转换芯片,DC/DC转换芯片的两个电源输入端连接在输入电容的两端;DC/DC转换芯片的最小启动电压VIn_Startup小于或等于第一电压监视芯片的启动电压阈值VStartup;第二储能器件,一端接地,另一端连接DC/DC转换芯片的输出端;第二电压监视芯片,具有输入端子以及指示输出端子,第二电压监视芯片的输入端子连接第二储能器件的所述另一端,指示输出端子用于第二电压监视芯片正常工作时,在所述输入端子输入的电压小于电压阈值Vth时,输出低电平,否则输出高电平,该高电平的电压等于输入端子上的输入电压,即第二储能器件的电压Vin;第三P型MOS管,第三P型MOS管的S极连接第二电压监视芯片的输入端子,D极用于连接系统负载芯片的电源输入端子,所述系统负载芯片具有第一高/低电平输出端和第二高/低电平输出端;第二上拉电阻,第二上拉电阻的一端连接第二电压监视芯片的输入端子,另一端连接第三P型MOS管的G极;第二N型MOS管,第二N型MOS管的D极连接第一P型MOS管的G极,S极接地;第一分压限流电阻,串联在第二电压监视芯片的指示输出端子和第二N型MOS管的G极之间;第二分压限流电阻,串联在所述系统负载芯片的第二高/低电平输出端和第二N型MOS管的G极之间;第三上拉电阻,一端连接第三P型MOS管的D极,另一端连接第一N型开关管的G极,且第三上拉电阻的所述另一端用于连接所述第一高/低电平输出端;第一P型开关管和第二P型开关管为PMOS或者PNP晶体管;所述第一储能器件的漏电流ILeakage_C、第一电压监视芯片的静态电流IMonitor和负载电阻的漏电流ILeakage_R满足:ILeakage_C+IMonitor_+ILeakage_R≤200nA;DC/DC转换芯片的最小启动电压VIn_Startup、第一电压监视芯片的启动电压阈值VStartup满足:VIn_Startup≤VStartup≤0.7V。根据本专利技术的另一方面,本专利技术为解决其技术问题,还提供了一种低功率启动并有电压监视功能的数控能量收集管理电路中,包含:第一储能器件,第一储能器件的一端接地,另一端用于连接RF转DC模块的输出端,其中RF转DC模块的输入端连接射频能量收集天线,用于将射频能量转换为直流电进行输出;第一P型开关管,S极连接所述第一储能器件的所述另一端;负载电阻,负载电阻的两端之间并联第一去耦电容,并联后一端接地,另一端连接第一P型开关管的D极;第一上拉电阻,一端连接所述第一储能器件的所述另一端;二极管,阳极连接第一上拉电阻的另一端,阴极连接第一P型开关管的D极,同时二极管的阳极连接第一P型开关管的G极;第一电压监视芯片,具有输入端口以及指示输出端口,输入端口连接第一P型开关管的D极,指示输出端口连接第一上拉电阻的所述另一端,指示输出端口用于第一电压监视芯片正常工作时,在所述输入端口输入的电压大于电压阈值VThreshold时,输出高电平,否则输出低电平,且在所述输入端口输入的电压小于第一电压监视芯片能够正常运行的最小工作电压时,处于高阻态;第二P型开关管,第二P型开关管的G极连接所述指示输出端口,S极连接所述第一储能器件的所述另一端;第一N型开关管,第一N型开关管的D极连本文档来自技高网
...

【技术保护点】
1.低功率启动并有电压监视功能的数控能量收集管理电路,其特征在于,包含:/n第一储能器件(C1),第一储能器件(C1)的一端接地,另一端用于连接RF转DC模块(RFDC)的输出端,其中RF转DC模块(RFDC)的输入端连接射频能量收集天线(TX),用于将射频能量转换为直流电进行输出;/n第一P型开关管(Q1),S极连接所述第一储能器件(C1)的所述另一端;/n负载电阻(R1),负载电阻(R1)的两端之间并联第一去耦电容(C2),并联后一端接地,另一端连接第一P型开关管(Q1)的D极;/n第一上拉电阻(R2),一端连接所述第一储能器件(C1)的所述另一端;/n二极管(D1),阳极连接第一上拉电阻(R2)的另一端,阴极连接第一P型开关管(Q1)的D极,同时二极管(D1)的阳极连接第一P型开关管(Q1)的G极;/n第一电压监视芯片(U1),具有输入端口以及指示输出端口,输入端口连接第一P型开关管(Q1)的D极,指示输出端口连接第一上拉电阻(R2)的所述另一端,指示输出端口用于第一电压监视芯片(U1)正常工作时,在所述输入端口输入的电压大于电压阈值V

【技术特征摘要】
1.低功率启动并有电压监视功能的数控能量收集管理电路,其特征在于,包含:
第一储能器件(C1),第一储能器件(C1)的一端接地,另一端用于连接RF转DC模块(RFDC)的输出端,其中RF转DC模块(RFDC)的输入端连接射频能量收集天线(TX),用于将射频能量转换为直流电进行输出;
第一P型开关管(Q1),S极连接所述第一储能器件(C1)的所述另一端;
负载电阻(R1),负载电阻(R1)的两端之间并联第一去耦电容(C2),并联后一端接地,另一端连接第一P型开关管(Q1)的D极;
第一上拉电阻(R2),一端连接所述第一储能器件(C1)的所述另一端;
二极管(D1),阳极连接第一上拉电阻(R2)的另一端,阴极连接第一P型开关管(Q1)的D极,同时二极管(D1)的阳极连接第一P型开关管(Q1)的G极;
第一电压监视芯片(U1),具有输入端口以及指示输出端口,输入端口连接第一P型开关管(Q1)的D极,指示输出端口连接第一上拉电阻(R2)的所述另一端,指示输出端口用于第一电压监视芯片(U1)正常工作时,在所述输入端口输入的电压大于电压阈值VThreshold时,输出高电平,否则输出低电平,且在所述输入端口输入的电压小于第一电压监视芯片(U1)能够正常运行的最小工作电压时,处于高阻态;
第二P型开关管(Q2),第二P型开关管(Q2)的G极连接所述指示输出端口,S极连接所述第一储能器件(C1)的所述另一端;
第一N型开关管(Q3),第一N型开关管(Q3)的D极连接所述指示输出端口;
输入电容(C3),一端接地,另一端分别连接第二P型开关管(Q2)的D极和第一N型开关管(Q3)的S极;
DC/DC转换芯片(U2),DC/DC转换芯片(U2)的两个电源输入端连接在输入电容(C3)的两端;DC/DC转换芯片(U2)的最小启动电压VIn_Startup小于或等于第一电压监视芯片(U2)的启动电压阈值VStartup;
第二储能器件(C4),一端接地,另一端连接DC/DC转换芯片(U2)的输出端;
第二电压监视芯片(U3),具有输入端子以及指示输出端子,第二电压监视芯片(U3)的输入端子连接第二储能器件(C4)的所述另一端,指示输出端子用于第二电压监视芯片(U3)正常工作时,在所述输入端子输入的电压小于电压阈值Vth时,输出低电平,否则输出高电平,该高电平的电压等于输入端子上的输入电压,即第二储能器件(C4)的电压Vin;
第三P型MOS管(Q4),第三P型MOS管(Q4)的S极连接第二电压监视芯片(U3)的输入端子,D极用于连接系统负载芯片(U4)的电源输入端子(VCC),所述系统负载芯片(U4)具有第一高/低电平输出端(I/O1)和第二高/低电平输出端(I/O2);
第二上拉电阻(R3),第二上拉电阻(R3)的一端连接第二电压监视芯片(U3)的输入端子,另一端连接第三P型MOS管(Q4)的G极;
第二N型MOS管(Q5),第二N型MOS管(Q5)的D极连接第一P型MOS管(Q4)的G极,S极接地;
第一分压限流电阻(R4),串联在第二电压监视芯片(U3)的指示输出端子和第二N型MOS管(Q5)的G极之间;
第二分压限流电阻(R5),串联在所述系统负载芯片(U4)的第二高/低电平输出端(I/O2)和第二N型MOS管(Q6)的G极之间;
第三上拉电阻(R6),一端连接第三P型MOS管(Q4)的D极,另一端连接第一N型开关管(Q3)的G极,且第三上拉电阻(R6)的所述另一端用于连接所述第一高/低电平输出端(I/O1);
第一P型开关管(Q1)和第二P型开关管(Q2)为PMOS或者PNP晶体管;
所述第一储能器件(C1)的漏电流ILeakage_C、第一电压监视芯片(U1)的静态电流IMonitor和负载电阻(R1)的漏电流ILeakage_R满足:ILeakage_C+IMonitor_+ILeakage_R≤200nA;DC/DC转换芯片(U2)的最小启动电压VIn_Startup、第一电压监视芯片(U1)的启动电压阈值VStartup满足:VIn_Startup≤VStartup≤0.7V。


2.低功率启动并有电压监视功能的数控能量收集管理电路,其特征在于,包含:
第一储能器件(C1),第一储能器件(C1)的一端接地,另一端用于连接RF转DC模块(RFDC)的输出端,其中RF转DC模块(RFDC)的输入端连接射频能量收集天线(TX),用于将射频能量转换为直流电进行输出;
第一P型开关管(Q1),S极连接所述第一储能器件(C1)的所述另一端;
负载电阻(R1),负载电阻(R1)的两端之间并联第一去耦电容(C2),并联后一端接地,另一端连接第一P型开关管(Q1)的D极;
第一上拉电阻(R2),一端连接所述第一储能器件(C1)的所述另一端;
二极管(D1),阳极连接第一上拉电阻(R2)的另一端,阴极连接第一P型开关管(Q1)的D极,同时二极管(D1)的阳极连接第一P型开关管(Q1)的G极;
第一电压监视芯片(U1),具有输入端口以及指示输出端口,输入端口连接第一P型开关管(Q1)的D极,指示输出端口连接第一上拉电阻(R2)的所述另一端,指示输出端口用于第一电压监视芯片(U1)正常工作时,在所述输入端口输入的电压大于电压阈值VThreshold时,输出高电平,否则输出低电平,且在所述输入端口输入的电压小于第一电压监视芯片(U1)能够正常运行的最小工作电压时,处于高阻态;
第二P型开关管(Q2),第二P型开关管(Q2)的G极连接所述指示输出端口,S极连接所述第一储能器件(C1)的所述另一端;
第一N型开关管(Q3),第一N型开关管(Q3)的D极连接所述指示输出端口;
输入电容(C3),一端接地,另一端分别连接第二P型开关管(Q2)的D极和第一N型开关管(Q3)的S极;
DC/DC转换芯片(U2),DC/DC转换芯片(U2)的两个电源输入端连接在输入电容(C3)的两端;DC/DC转换芯片(U2)的最小启动电压VIn_Startup小于或等于第一电压监视芯片(U2)的启动电压阈值VStartup;
第二储能器件(C4),一端接地,另一端连接DC/DC转换芯片(U2)的输出端;
第三P型MOS管(Q4),第三P型MOS管(Q4)的S极连接第二储能器件(C4)的所述另一端,D极用于连接系统负载芯片(U4)的电源输入端子;所述系统负载芯片(U4)具有第一高/低电平输出端(I/O1)和第二高/低电平输出端(I/O2);
第二电压监视芯片(U3),具有输入端子以及指示输出端子,第二电压监视芯片(U3)的输入端子连接第三P型MOS管(Q4)的S极,指示输出端子用于第二电压监视芯片(U3)正常工作时,在所述...

【专利技术属性】
技术研发人员:张帅唐晓庆佘亚军张超
申请(专利权)人:中国船舶重工集团公司第七一九研究所
类型:发明
国别省市:湖北;42

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1