【技术实现步骤摘要】
一种含铁冶金渣粒梯级余热回收及直接还原系统及方法
:本专利技术属于余热回收及冶金节能
,具体涉及一种含铁冶金渣粒梯级余热回收及直接还原系统及方法。
技术介绍
:冶金渣是金属冶炼过程中排出的副产物,如高炉渣、钢渣、铜渣、镍渣、铅渣、铝渣等。冶金渣具有排出温度高,成分复杂,资源化回收利用价值大的特点。仅以高炉渣为例,高炉渣出炉温度为1500℃左右,吨渣显热约合60kg标煤。我国高炉渣2018年产量可达2.5亿吨,约合1500万吨标准煤。因此,实现冶金工业固废的高效清洁余热回收是我国工业节能减排的关键。目前,对于冶金渣传统的处理方式为水淬法,该种处理方式消耗了大量水资源,而且在水淬过程中会产生重金属及H2S、SO2等严重的污染。随着冶金渣干法粒化技术的研发和逐渐成熟,在不消耗水的前提下,干法粒化技术将冶金渣余热有效回收提供了可能,由此可改变传统耗水、污染严重的现状,实现工艺流程末端的节能减排改造。冶金渣干法粒技术,通过粒化装置(如转杯、转筒、转鼓、转盘等)将液态渣转变为固体颗粒,继而通过与传热介质直接或者间接接触进行热量交换,回收颗粒的高温显热。目前的高温固体颗粒的余热回收工艺主要是物理法。该方法以水、空气等为换热介质,具有能源转换次数多、余热回收效率低的特点,回收后可产生热水或蒸汽或热空气等,其品质难以从本质上提高。采用物理法回收余热产生热水或热蒸汽,热效率为76%,效率为14.4%,34.2%。化学法主要是通过典型的吸热化学反应吸收颗粒的高温显热,产生具有较高产品附加值的化工产品。该方法将颗粒的热能转变为 ...
【技术保护点】
1.一种含铁冶金渣粒梯级余热回收及直接还原系统,其特征在于,包括余热回收系统,混料系统和直接还原系统,所述余热回收系统,混料系统和直接还原系统依次连接,其中:/n所述混料系统包括相连接的料仓和混料装置;/n所述直接还原系统包括直接还原炉;/n所述余热回收系统包括煅烧炉,分离器,热解炉,除尘器及除尘净化器组成,所述余热回收系统连接方式采用A方式或B方式,A方式为:所述煅烧炉、分离器和热解炉依次连接;B方式为:所述煅烧炉、热解炉和分离器依次连接;当采用A方式时,热解炉与混料系统的料仓连接,分离器还与料仓连接;当采用B方式时,分离器与混料系统的料仓连接;/n所述煅烧炉连接有除尘器,所述热解炉连接有除尘净化器。/n
【技术特征摘要】
1.一种含铁冶金渣粒梯级余热回收及直接还原系统,其特征在于,包括余热回收系统,混料系统和直接还原系统,所述余热回收系统,混料系统和直接还原系统依次连接,其中:
所述混料系统包括相连接的料仓和混料装置;
所述直接还原系统包括直接还原炉;
所述余热回收系统包括煅烧炉,分离器,热解炉,除尘器及除尘净化器组成,所述余热回收系统连接方式采用A方式或B方式,A方式为:所述煅烧炉、分离器和热解炉依次连接;B方式为:所述煅烧炉、热解炉和分离器依次连接;当采用A方式时,热解炉与混料系统的料仓连接,分离器还与料仓连接;当采用B方式时,分离器与混料系统的料仓连接;
所述煅烧炉连接有除尘器,所述热解炉连接有除尘净化器。
2.根据权利要求1所述的含铁冶金渣粒梯级余热回收及直接还原系统,其特征在于,当所述余热回收系统连接方式采用A方式连接时,所述混料系统还包括制球系统,所述制球系统包括相连接的制球装置及干燥炉,同时所述制球装置与混料装置相连接,干燥炉与直接还原炉连接。
3.采用权利要求1所述的梯级余热回收及直接还原系统进行含铁冶金渣粒梯级余热回收及直接还原的方法,其特征在于,包括以下步骤:
步骤1,高温颗粒余热回收:
取含铁冶金渣粒及碳酸钙前驱体,通过给料装置进入煅烧炉,含铁冶金渣粒在自身重力的作用下在气化炉内自上而下运动,碳酸钙前驱体发生煅烧反应,生成CaO和富CO2的烟气,并获得初步降温后颗粒,其中,所述含铁冶金渣粒温度为1000~1200℃,含铁冶金渣粒中的Si元素与碳酸钙中的Ca元素二者Ca/Si质量比为1:(0.5~1.5),初步降温后颗粒温度为500~800℃;
步骤2,中低温颗粒余热回收,采用以下方式A或方式B进行:
方式A:初步降温后颗粒与CaO一起进入分离器,分离CaO后,初步降温后颗粒进入热解炉,CaO进入料仓,同时向热解炉中加入含碳固废材料,含碳固废材料与初步降温后颗粒按C/O为(2~3):1加入;含碳固废材料在炉内发生热解反应,获得固体半焦与冷却后颗粒,同时产生热解气,所述冷却后颗粒温度为温度≤200℃,冷却后的颗粒与固体半焦同CaO一起进入料仓;
方式B:初步降温后颗粒与CaO一起进入热解炉,同时向热解炉中加入含碳固废材料,含碳固废材料与降温后颗粒按照C/O为(3~4):1加入,降温后颗粒在热解炉内自上而下运动,含碳固废材料在炉内发生热解反应,获得固体半焦与冷却后颗粒,同时产生热解气,所述冷却后颗粒温度为温度降低至≤200℃,冷却后的颗粒与固体半焦同CaO一起进入料仓;
步骤3,混料:
当采用方式A时,进行以下步骤:
冷却后颗粒、固体半焦及CaO经分离出多余固体半焦后,经料仓进入混料装置,获得混匀物料,直接进行步骤4;
当采用方式B时,进行以下步骤:
(1)冷却后颗粒、固体半焦及CaO进入料仓,统一作为原料,同时向料仓中加入粘结剂,按质量比冷却后颗粒:粘结剂=1:(0.005~0.03),料仓中的原料进入混料装置,混料装置中加入水,按质量比冷却后颗粒:水=1:(0.11~0.21),获得混匀物料;
(2)混匀物料进入制球装置,在制球装置内产生10~20mm的含碳球团,含碳球团在干燥炉内于100~150℃的温度下进行干燥0.5~1.5h,干燥后的含碳球团进入直接还原炉;
步骤4,直接还原:
干燥后的含碳...
【专利技术属性】
技术研发人员:左宗良,张敬奎,罗思义,于庆波,
申请(专利权)人:青岛理工大学,
类型:发明
国别省市:山东;37
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。