当前位置: 首页 > 专利查询>天津大学专利>正文

一种石墨烯表面负载不同含量金属纳米颗粒的制备方法技术

技术编号:23329539 阅读:29 留言:0更新日期:2020-02-15 00:03
本发明专利技术涉及一种石墨烯表面负载不同含量金属纳米颗粒的制备方法,包括下列步骤:(1)以六水合硝酸镍为镍源和催化剂,葡萄糖为碳源,氯化钠为模板,将三者共同溶于适量去离子水,获得均匀溶液后置于冷冻干燥,之后将复合粉末研磨,获得石墨烯负载镍纳米颗粒的前驱体;将前驱体粉末放置方舟并置于管式炉中间温区部位,进行化学气相沉积反应,反应温度为670‑700℃,保温时间一段时间,待保温时间完成后,将样品快速降温获得含有氯化钠模板的石墨烯表面负载镍纳米颗粒;将煅烧后的粉末除去氯化钠,干燥后获得石墨烯负载镍纳米颗粒的粉末。

Preparation of graphene loaded metal nanoparticles with different content

【技术实现步骤摘要】
一种石墨烯表面负载不同含量金属纳米颗粒的制备方法
本专利技术涉及一种利用冷冻干燥技术和化学气相沉积法制备石墨烯负载镍纳米颗粒并对表面镍颗粒含量进行调控,属于石墨烯制备的领域。
技术介绍
石墨烯是由sp2杂化轨道构成的单原子层结构,具有优异的性质。其中,力学性能方面拉伸强度可以达到130GPa,是钢的100倍左右,杨氏模量1.1TPa;室温下的载流子传输率为15000cm/(V·s),是常用的硅材料的10倍以上,并且在低温下具有更优异的传输率;而石墨烯的热导率约为5000J/(m·K·s),是目前发现的最好的导热材料,导热性能已经超过了其他碳材料,例如碳纳米管和金刚石等。因此,石墨烯自发现以来被认为是兼具力学、电学、热力学等多种优异性能的材料,被广泛应用于功能和结构材料。特别是用来作为催化剂的载体,以及增强树脂基,高分子基和金属基复合材料中。通常制备石墨烯方法有剥离法,热解法,氧化还原法和化学气相沉积法等。而石墨烯应用于功能材料和结构材料领域时需要在石墨烯表面进行金属纳米颗粒修饰,以达到理想的效果。通常,对石墨烯负载金属纳米颗粒都是通过后期对石墨烯的处理以达到目的,例如对石墨烯表面进行氧化或者酸化使石墨烯负载一定量的官能团来提高表面的活性。但是这种方法很可能会使石墨烯与负载颗粒之间的结合性能较差,导致最终的应用受到限制。同时,这种后期处理的方法,过程耗时,繁琐,并且需要大量的化学试剂,给环境和人体带来很大的伤害。此外,石墨烯表面负载颗粒数量对石墨烯在功能和结构材料中的应用影响很大。所以,怎样通过简单的制备方法,并且可以有效地控制颗粒的负载含量,同时制备出高质量石墨烯并且与金属颗粒之间具有高的结合强度是我们今后研究的重点。
技术实现思路
本专利技术的目的在于提出一种新型的控制石墨烯表面负载金属颗粒含量的方法,并最终实现石墨烯的稳定制备。本专利技术通过模板法制备简单、高效、具有高质量、性能稳定且金属颗粒含量可控的石墨烯负载金属镍纳米颗粒,同时,颗粒与石墨烯之间具有强的结合性能。为实现上述目的,本专利技术通过以下技术方案加以实现。一种石墨烯表面负载不同含量金属纳米颗粒的制备方法,包括下列步骤:(1)以六水合硝酸镍为镍源和催化剂,葡萄糖为碳源,氯化钠为模板,其中,镍原子,碳原子和钠原子按摩尔比0~1.0:20:200(镍原子含量可空)进行配比,将三者共同溶于适量去离子水,获得均匀溶液后置于冷冻干燥,之后将复合粉末研磨,获得石墨烯负载镍纳米颗粒的前驱体;(2)将前驱体粉末放置方舟并置于管式炉中间温区部位,进行化学气相沉积反应,反应温度为670-700℃,气氛为氢气且流量为50-100ml/min,升温速率为10℃/min,保温时间一段时间,待保温时间完成后,将样品快速降温获得含有氯化钠模板的石墨烯表面负载镍纳米颗粒;(3)将煅烧后的粉末除去氯化钠,干燥后获得石墨烯负载镍纳米颗粒的粉末。附图说明图1为实施例1制备的不含有金属颗粒的石墨烯纳米片的SEM图,从图中可以看出,石墨烯表面干净无杂质。图2为实施例2制得的镍:碳:钠按原子比0.2:20:200进行配比得到的负载少量镍颗粒的石墨烯。图3为实施例3制得的镍:碳:钠按原子比0.4:20:200进行配比得到的负载少量镍颗粒的石墨烯。图4为实施例4制得的镍:碳:钠按原子比0.6:20:200进行配比得到的负载少量镍颗粒的石墨烯。图5为实施例5制得的镍:碳:钠按原子比0.8:20:200进行配比得到的负载少量镍颗粒的石墨烯。图6为实施例6制得的镍:碳:钠按原子比1.0:20:200进行配比得到的负载少量镍颗粒的石墨烯。从图1-6可以看着,随着镍含量的提高,石墨烯表面颗粒数量逐渐增多,且分布均匀。图7为不同镍颗粒含量的石墨烯的拉曼光谱图,从图中可以发现,当颗粒含量不同时,石墨烯的缺陷程度相差不大,当镍原子含量为1.0时,具有最好的结晶性。图8为对比例1中制备的还原氧化石墨烯负载镍纳米颗粒的TEM图,由图中可以,镍纳米颗粒均在在还原氧化石墨烯表面负载。图9(a)-(b)为模板法合成的石墨烯负载镍纳米颗粒经过3h超声后的TEM图片,从图中可以看出,虽然经过超声处理,但镍颗粒仍然均匀负载在石墨烯表面,这说明我们通过盐模板原位合成的石墨烯与镍颗粒之间具有非常强的结合性能。图9(c)-(d)为还原氧化石墨烯负载镍纳米颗粒经过3h超声后的TEM图片,从图中可以看出,经过超声处理,大部分镍颗粒已经从石墨烯表面脱落,这说明后期处理方法合成的还原氧化石墨烯与镍颗粒之间具有较差的结合性能。具体实施方式下面结合具体实例说明本专利技术,但并不限制本专利技术。实施例1(1)以葡萄糖为碳源,氯化钠为模板,其中,碳原子和钠原子按摩尔比20:200进行配比。将三者共同溶于120~150ml去离子水(未计算浓度,溶于适量水即可),搅拌2h,待获得均匀溶液后置于冰箱冷冻24h。将冻住的溶液放置冷冻干燥机中进行24h冷冻干燥,之后将复合粉末用研钵进行研磨,获得石墨烯负载镍纳米颗粒的前驱体;(2)将前驱体粉末放置方舟并置于管式炉中间温区部位,进行化学气相沉积反应,反应温度为670-700℃,气氛为氢气且流量为50-100ml/min,升温速率为10℃/min,保温时间为两个小时,待保温时间完成后,将样品快速降温获得含有氯化钠模板的石墨烯表面负载镍纳米颗粒;(3)将煅烧后的粉末倒入到200ml去离子水中搅拌,使氯化钠充分溶解,之后进行抽滤除去氯化钠,最后进行真空干燥获得不含镍纳米颗粒的石墨烯粉末。实施例2(1)以六水合硝酸镍为镍源和催化剂,葡萄糖为碳源,氯化钠为模板,其中,镍原子,碳原子和钠原子按摩尔比0.2:20:200进行配比。将三者共同溶于120~150ml去离子水,搅拌2h,待获得均匀溶液后置于冰箱冷冻24h。将冻住的溶液放置冷冻干燥机中进行24h冷冻干燥,之后将复合粉末用研钵进行研磨,获得石墨烯负载镍纳米颗粒的前驱体;(2)将前驱体粉末放置方舟并置于管式炉中间温区部位,进行化学气相沉积反应,反应温度为670-700℃,气氛为氢气且流量为50-100ml/min,升温速率为10℃/min,保温时间为两个小时,待保温时间完成后,将样品快速降温获得含有氯化钠模板的石墨烯表面负载镍纳米颗粒;(3)将煅烧后的粉末倒入到200ml去离子水中搅拌,使氯化钠充分溶解,之后进行抽滤除去氯化钠,最后进行真空干燥获得石墨烯负载镍纳米颗粒的粉末。实施例3(1)以六水合硝酸镍为镍源和催化剂,葡萄糖为碳源,氯化钠为模板,其中,镍原子,碳原子和钠原子按摩尔比0.4:20:200进行配比。将三者共同溶于120~150ml去离子水,搅拌2h,待获得均匀溶液后置于冰箱冷冻24h。将冻住的溶液放置冷冻干燥机中进行24h冷冻干燥,之后将复合粉末用研钵进行研磨,获得石墨烯负载镍纳米颗粒的前驱体;(2)将前驱体粉末放置方舟并置于管式本文档来自技高网
...

【技术保护点】
1.一种石墨烯表面负载不同含量金属纳米颗粒的制备方法,包括下列步骤:/n(1)以六水合硝酸镍为镍源和催化剂,葡萄糖为碳源,氯化钠为模板,其中,镍原子,碳原子和钠原子按摩尔比0~1.0:20:200(镍原子含量可空)进行配比,将三者共同溶于适量去离子水,获得均匀溶液后置于冷冻干燥,之后将复合粉末研磨,获得石墨烯负载镍纳米颗粒的前驱体;/n(2)将前驱体粉末放置方舟并置于管式炉中间温区部位,进行化学气相沉积反应,反应温度为670-700℃,气氛为氢气且流量为50-100ml/min,升温速率为10℃/min,保温时间一段时间,待保温时间完成后,将样品快速降温获得含有氯化钠模板的石墨烯表面负载镍纳米颗粒;/n(3)将煅烧后的粉末除去氯化钠,干燥后获得石墨烯负载镍纳米颗粒的粉末。/n

【技术特征摘要】
1.一种石墨烯表面负载不同含量金属纳米颗粒的制备方法,包括下列步骤:
(1)以六水合硝酸镍为镍源和催化剂,葡萄糖为碳源,氯化钠为模板,其中,镍原子,碳原子和钠原子按摩尔比0~1.0:20:200(镍原子含量可空)进行配比,将三者共同溶于适量去离子水,获得均匀溶液后置于冷冻干燥,之后将复合粉末研磨,获得石墨烯负载镍纳米颗粒的前驱体;
...

【专利技术属性】
技术研发人员:何春年杨立壮赵乃勤师春生刘恩佐马丽颖
申请(专利权)人:天津大学
类型:发明
国别省市:天津;12

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1