一种基于立体视觉系统高精度的三维重建方法技术方案

技术编号:22078125 阅读:45 留言:0更新日期:2019-09-12 14:58
本发明专利技术公开了一种基于立体视觉系统高精度的三维重建方法,涉及三维重建领域,解决了现有的双目视觉法操作步骤异常繁琐、立体匹配的运算量过大、匹配速度较慢,最终三维重建的效果和精度不佳的弊端,其技术方案要点是经过图像采集、相机标定和立体矫正、图像预处理、使用去模糊单元对图像进行去模糊、多重网络算法立体匹配、小波神经网络曲面拟合法拟合点云误差之后再进行三维重建,本发明专利技术的一种基于立体视觉系统高精度的三维重建方法,三维重建效果佳,精度较高,较传统的双目视觉法相比,操作步骤简单,精度高,匹配速度快。

A High Precision 3D Reconstruction Method Based on Stereo Vision System

【技术实现步骤摘要】
一种基于立体视觉系统高精度的三维重建方法
本专利技术涉及三维重建领域,特别涉及一种基于立体视觉系统高精度的三维重建方法。
技术介绍
三维重建经过数十年的发展,已经取得巨大的成功。基于视觉的三维重建在计算机领域是一个重要的研究内容,主要通过使用相关仪器来获取物体的二维图像数据信息,然后,再对获取的数据信息进行分析处理,最后,利用三维重建的相关理论重建出真实环境中物体表面的轮廓信息。基于视觉的三维重建具有速度快、实时性好等优点,能够广泛应用于人工智能、机器人、无人驾驶、虚拟现实和3D打印等领域,具有重要的研究价值,也是未来发展的重要研究方向。三维重建方法分为将非接触式方法分为主动式和被动式两类,主动视觉又包括激光扫描法、结构光法、阴影法、TOF技术、雷达技术、Kinect技术等;被动视觉法根据摄像机数目的不同分为单目视觉法、双目视觉法和多目视觉法;根据原理(匹配方法)不同又可以分为区域视觉法、特征视觉法等;根据应用方法也可以分为运动恢复结构法和机器学习法等。但是现有的双目视觉法操作步骤异常繁琐,导致了立体匹配的运算量过大,匹配速度较慢,最终三维重建的效果和精度都往往不尽人意。
技术实现思路
本文档来自技高网
...

【技术保护点】
1.一种基于立体视觉系统高精度的三维重建方法,其特征是,包括有以下步骤:S1、图像采集:选取两台相同的相机,分别平行放置于目标物体的左右两侧,并同时获取同一场景中目标物体的图像;S2、相机标定及立体校正:获取相机内外部的参数,并根据相机的内外部参数将采集的图像矫正为标准极线几何结构;S3、图像预处理:将校正后的图像匹配至同一水平线,通过加权平均法转化为灰度图像,通过直方图均衡化使得图像的灰度分布趋向平均,并进行自动全局阈值分割,识别出物体所在区域;S4、图像去模糊:使用去模糊单元对图像进行去模糊;去模糊单元包括小视场模糊核获取单元、全视场模糊核获取单元、非盲区卷积处理单元和盲区卷积处理单元;使...

【技术特征摘要】
1.一种基于立体视觉系统高精度的三维重建方法,其特征是,包括有以下步骤:S1、图像采集:选取两台相同的相机,分别平行放置于目标物体的左右两侧,并同时获取同一场景中目标物体的图像;S2、相机标定及立体校正:获取相机内外部的参数,并根据相机的内外部参数将采集的图像矫正为标准极线几何结构;S3、图像预处理:将校正后的图像匹配至同一水平线,通过加权平均法转化为灰度图像,通过直方图均衡化使得图像的灰度分布趋向平均,并进行自动全局阈值分割,识别出物体所在区域;S4、图像去模糊:使用去模糊单元对图像进行去模糊;去模糊单元包括小视场模糊核获取单元、全视场模糊核获取单元、非盲区卷积处理单元和盲区卷积处理单元;使用小视场模糊核获取单元对预处理后的图像进行模糊核估计处理,以获取小视场模糊核,再使用全视场模糊核获取单元将小视场模糊核获取单元获取的小视场模糊核替代为全视场图像的全视场模糊核,非盲区卷积处理单元根据模糊核替代单元替代后的全视场模糊核对全视场图像进行非盲区卷积处理,盲区卷积处理单元根据模糊核替代单元替代后的全视场模糊核对全视场图像进行盲区卷积处理;S5、立体匹配:通过多重网络算法进行立体匹配,以极线约束与金字塔算法为基础,引进一组不同分辨率的图像,采用SLIC对图像进行分割,并对分割的区域应用迭代α扩张算法进行若干次迭代以获得对应的视差图;S6、三维重建:通过双目立体视觉原理,结合相机内外参数及视差图获取物体的三维坐标图像,并获取离散点云数据通过基于小波神经网络的曲面拟合法对离散点云数据进行深度恢复及点云平滑,得到一个隐式曲面,然后通过拟合点云误差剔除误差比较大的离散点云数据,进而重建出光滑的网格表面。2.根据权利要求1所述的基于立体视觉系统高精度的三维重建方法,其特征是:在S5中采用SLIC对图像进行分割,通过分割图像的每一个像素都被分配了一个表示Segment编号的Label,从1到最大分割块数K,对于每一个Segment...

【专利技术属性】
技术研发人员:周虹高锋周瓒郝路
申请(专利权)人:上海工程技术大学
类型:发明
国别省市:上海,31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1