双边错位差动共焦透镜折射率测量方法技术

技术编号:21568718 阅读:24 留言:0更新日期:2019-07-10 14:44
本发明专利技术属于光学精密测量技术领域,涉及一种双边错位差动共焦透镜折射率测量方法。该方法在共焦测量系统中,首先在CCD探测的艾丽斑图像上通过软件设置大、小虚拟针孔探测区域并将其探测的两条共焦特性曲线通过相减处理来锐化共焦特性曲线,其次将锐化共焦特性曲线进行双边错位差动相减处理来得到轴向高灵敏的差动共焦特性曲线,然后利用该双边错位差动共焦特性曲线零点与共焦测量系统焦点精确对应这一特性对被测透镜顶点位置进行高精度定焦寻位,最后通过光线追迹补偿计算来精确得到透镜折射率,实现透镜折射率的高精度测量。该方法与已有的透镜折射率测量方法相比,具有测量精度高、抗环境干扰能力强和结构简单等优势,在光学精密测量技术领域具有广泛的应用前景。

Measurement of refractive index of bilateral dislocation differential confocal lens

【技术实现步骤摘要】
双边错位差动共焦透镜折射率测量方法
本专利技术涉及双边错位差动共焦透镜折射率测量方法,尤其涉及用于透镜折射率的非接触式高精度测量方法,属于光学精密测量

技术介绍
球面透镜是光学系统中最重要的元件之一。球面透镜的折射率是其基本参数,直接决定透镜的焦距、主平面位置等性能参数,因而球面透镜折射率测量一直是光学测量中最基本的问题。目前测量玻璃折射率的主要方法是:V棱镜法和直角照射法。这两种方法的测量精度很高,但是需要将透镜材料加工成特定的形状,因此无法直接用于透镜折射率测量。上述两方法适用于制作透镜以前,预先对该批次玻璃材料的折射率进行测量时使用,但是由于玻璃材质具有一定的不均匀性,同一批次的玻璃折射率存在一定差异,这对于精密光学元件来说是不可忽略的,因此,对透镜折射率进行非接触高精度测量十分必要。为此,国内学者提出了无损的测量方法,发表的文献主要包括:《武汉测绘科技大学学报》的《透镜折射率的高精度非接触测量方法》,《哈尔滨理工大学学报》的《用环形横向剪切干涉仪测量透镜的折射率》。此类技术主要采用了浸液法,即调制不同折射率液体的混合比例使混合液体的折射率与被测透镜匹配,再利用阿贝法等方法测量混合液的折射率,从而得到被测透镜的折射率。该方法的测量精度比传统透镜成像测量方法有所提高,但是配置折射率液的过程繁琐,难以实现工程化。国外方面,EduardoA.Barbosa等学者在文献《Refractiveandgeometriclenscharaterizationthroughmulti-wavelengthdigitalspecklepatterninterferometry》(OpticsCommunications,281,1022-1029,2008)中提出采用多模激光干涉的方法测量透镜的折射率。该方法测量过程简便,但是数据处理过程繁琐,干涉条纹易受环境干扰,测量精度不高。HiroyukiSuhara在《Interferometricmeasurementoftherefractive-indexdistributioninplasticlensesbyuseofcomputedtomography》(AppliedOptics,41,25,2002)中提出使用浸液法与干涉法结合的方法测量透镜折射率。该方法的测量精度很高,但是需要使用复杂的温控系统,计算繁琐,而且测量样品的绝对折射率需要使用其他方法测量得到。本专利技术人曾于2010年申请国家专利“基于差动共焦技术的透镜折射率与厚度的测量方法”,通过差动共焦原理精确定焦透镜的前后表面顶点位置以及有、无被测镜时平面反射镜的位置,实现了透镜折射率的测量,并可同时测得透镜的折射率。但是必须使用两路探测器,并且这两路探测器的位置需保证离焦量相等,系统结构、装调过程比较复杂,装调不准所引入的误差可能较大;更换被测镜后,两探测器的离焦量可能需要重新调整。为了进一步提高透镜折射率的测量精度,本专利技术提出了一种双边错位差动共焦透镜折射率测量方法,该方法通过相减处理锐化共焦特性曲线,通过锐化共焦特性曲线的双边错位差动相减处理得到轴向高灵敏的差动共焦特性曲线,然后利用该双边错位差动共焦特性曲线零点对被测透镜折射率测量顶点位置进行高精度定焦寻位,最后通过光线追迹补偿计算来精确得到透镜的折射率,实现透镜折射率的高精度测量。
技术实现思路
为了解决透镜折射率测量中高精度定焦难题,本专利技术公开了双边错位差动共焦透镜折射率测量方法,该方法的核心思想是:在共焦测量光路系统中,通过大、小虚拟针孔共焦特性曲线的横向相减处理来锐化共焦响应特性曲线,通过锐化共焦响应特性曲线的双边错位差动相减处理来实现被测表面的差动共焦双极性定焦测量,通过差动共焦定焦曲线的线性拟合来提升焦点位置捕获精度,进而提高透镜折射率测量中透镜顶点位置的定焦精度,以期实现透镜折射率的高精度测量。本专利技术的目的是通过下述技术方案实现的。本专利技术公开的双边错位差动共焦透镜折射率测量方法,在共焦测量系统中,首先在CCD探测的艾丽斑图像上通过软件设置大、小虚拟针孔探测区域并将其探测的两条共焦特性曲线通过相减处理来锐化共焦特性曲线,其次将锐化共焦特性曲线进行双边错位差动相减处理来得到轴向高灵敏的差动共焦特性曲线,然后利用该双边错位差动共焦特性曲线零点与共焦测量系统焦点精确对应的特性对被测透镜折射率测量顶点位置进行高精度定焦寻位,最后通过光线追迹补偿计算来精确得到透镜的折射率,实现透镜折射率的高精度测量。本专利技术公开的双边错位差动共焦透镜折射率测量方法,包括以下步骤:a)打开点光源,调整被测透镜使其与测量物镜和准直透镜共光轴,点光源发出的光经分束镜、准直透镜和测量物镜后汇聚成测量光束照射在被测透镜上,被测透镜反射的测量光束再经测量物镜和准直透镜后被分束镜反射进入到横向相减共焦探测系统,形成的测量艾里斑被CCD探测器探测;b)沿光轴方向移动被测透镜使测量光束的焦点与被测透镜的顶点A位置重合;在该透镜顶点位置附近相对轴向扫描测量物镜或被测透镜,将横向相减共焦探测系统中大虚拟针孔探测域探测到的大虚拟针孔探测共焦特性曲线IB(z)和小虚拟针孔探测域探测到的小虚拟针孔探测共焦特性曲线IS(z)进行相减处理,得到半高宽压缩的锐化共焦特性曲线I(z)=IS(z)-γIB(z),其中z为轴向坐标,γ为调节因子;c)将锐化共焦特性曲线沿横向坐标平移S得到平移锐化共焦特性曲线,并使锐化共焦特性曲线和平移锐化共焦特性曲线的侧边交汇,对锐化共焦特性曲线和平移锐化共焦特性曲线分别进行同横坐标点插值处理后,再进行逐点相减处理得到错位相减差动共焦特性曲线ID(z)=I(z)-I(z,-S),利用差动共焦点性拟合直线对错位相减差动共焦特性曲线的线性段数据进行直线拟合,通过反向回移差动共焦点性拟合直线S/2位置的回移差动共焦拟合直线的移位拟合直线零点来精确确定测量光束焦点与被测透镜的顶点重合的位置,进而得到被测透镜的透镜顶点A位置Z1;d)继续沿光轴方向移动测量物镜或被测透镜,使测量光束的焦点与被测透镜的后表面顶点B重合;在所述透镜顶点B位置附近轴向扫描测量物镜或被测透镜,由横向相减共焦探测系统通过处理测得的测量艾里斑得到锐化共焦特性曲线后再进行双边错位相减处理,得到与测量物镜焦点附近对应的第二错位相减差动共焦特性曲线,主控计算机按着步骤c)通过对第二错位相减差动共焦特性曲线进行线性拟合、拟合直线回移及确定回移拟合直线零点精确确定被测透镜的后表面顶点B的位置,记录此时被测透镜后表面顶点B的位置Z2;e)根据建立的光线追迹补偿模型,得到被测透镜折射率n满足以下公式:代入已知参数:测量光束的数值孔径角α1、被测透镜的前表面曲率半径r1和中心厚度t、空气折射率nair和两次定焦位置之间的距离d1=|Z2-Z1|,即得出被测透镜的折射率n。本专利技术所述的双边错位差动共焦透镜折射率测量方法,将激光差动共焦技术与光线追迹技术有机融合,建立光线追迹及其补偿模型,消除各层析定焦表面参数间的相互影响,进而得出透镜折射率的计算公式。如公式(2)所示,rN为第N个表面SN的曲率半径,nN为第N个表面SN与第N+1个表面SN+1之间的材料折射率,dN-1为第N-1个表面SN-1与第N个表面SN之本文档来自技高网
...

【技术保护点】
1.双边错位差动共焦透镜中心厚度测量方法,其特征在于:包括以下步骤,a)打开点光源(1),调整被测透镜(6)使其与测量物镜(4)和准直透镜(3)共光轴,点光源(1)发出的光经分束镜(2)、准直透镜(3)和测量物镜(4)后汇聚成测量光束(5)照射在被测透镜(6)上,被测透镜(6)顶点反射的测量光束(5)再经测量物镜(4)和准直透镜(3)后被分束镜(2)反射进入到横向相减共焦探测系统(7),形成的测量艾里斑(10)被CCD探测器(9)探测;b)沿光轴方向移动被测透镜(6)使测量光束(5)的焦点与被测透镜(6)的顶点A位置重合;在所述透镜顶点A位置附近相对轴向扫描测量物镜(4)或被测透镜(6),将横向相减共焦探测系统(7)中大虚拟针孔探测域(11)探测到的大虚拟针孔探测共焦特性曲线(13)IB(z)和小虚拟针孔探测域(12)探测到的小虚拟针孔探测共焦特性曲线(14)IS(z)进行相减处理,得到半高宽压缩的锐化共焦特性曲线(15)I(z)=IS(z)‑γIB(z),其中z为轴向坐标,γ为调节因子;c)将锐化共焦特性曲线(15)沿横向坐标平移S得到平移锐化共焦特性曲线(16),并使锐化共焦特性曲线(15)和平移锐化共焦特性曲线(16)的侧边交汇,对锐化共焦特性曲线(15)和平移锐化共焦特性曲线(16)分别进行同横坐标点插值处理后,再进行逐点相减处理得到错位相减差动共焦特性曲线(17)ID(z)=I(z)‑I(z,‑S),利用差动共焦线性拟合直线(18)对错位相减差动共焦特性曲线(17)的线性段数据进行直线拟合,通过反向回移差动共焦线性拟合直线(18)S/2位置的回移差动共焦拟合直线(20)的移位拟合直线零点(21)来精确确定测量光束(5)焦点与被测透镜(6)的顶点A重合的位置,进而得到被测透镜(6)顶点A的位置Z1;d)继续沿光轴方向移动测量物镜(4)或被测透镜(6),使测量光束(5)的焦点与被测透镜(6)的后表面顶点B重合;在所述透镜顶点B位置附近轴向扫描测量物镜(4)或被测透镜(6),由横向相减共焦探测系统(7)通过处理测得的测量艾里斑(10)得到锐化共焦特性曲线(15)后再进行双边错位相减处理,得到与测量物镜(4)焦点附近对应的第二错位相减差动共焦特性曲线(22),主控计算机(24)按着步骤c)通过对第二错位相减差动共焦特性曲线(22)进行线性拟合、拟合直线回移及确定回移拟合直线零点精确确定被测透镜(6)的后表面顶点B位置,记录此时被测透镜(6)后表面顶点B的位置Z2;e)根据建立的光线追迹补偿模型,得到被测透镜(6)折射率n满足以下公式:...

【技术特征摘要】
1.双边错位差动共焦透镜中心厚度测量方法,其特征在于:包括以下步骤,a)打开点光源(1),调整被测透镜(6)使其与测量物镜(4)和准直透镜(3)共光轴,点光源(1)发出的光经分束镜(2)、准直透镜(3)和测量物镜(4)后汇聚成测量光束(5)照射在被测透镜(6)上,被测透镜(6)顶点反射的测量光束(5)再经测量物镜(4)和准直透镜(3)后被分束镜(2)反射进入到横向相减共焦探测系统(7),形成的测量艾里斑(10)被CCD探测器(9)探测;b)沿光轴方向移动被测透镜(6)使测量光束(5)的焦点与被测透镜(6)的顶点A位置重合;在所述透镜顶点A位置附近相对轴向扫描测量物镜(4)或被测透镜(6),将横向相减共焦探测系统(7)中大虚拟针孔探测域(11)探测到的大虚拟针孔探测共焦特性曲线(13)IB(z)和小虚拟针孔探测域(12)探测到的小虚拟针孔探测共焦特性曲线(14)IS(z)进行相减处理,得到半高宽压缩的锐化共焦特性曲线(15)I(z)=IS(z)-γIB(z),其中z为轴向坐标,γ为调节因子;c)将锐化共焦特性曲线(15)沿横向坐标平移S得到平移锐化共焦特性曲线(16),并使锐化共焦特性曲线(15)和平移锐化共焦特性曲线(16)的侧边交汇,对锐化共焦特性曲线(15)和平移锐化共焦特性曲线(16)分别进行同横坐标点插值处理后,再进行逐点相减处理得到错位相减差动共焦特性曲线(17)ID(z)=I(z)-I(z,-S),利用差动共焦线性拟合直线(18)对错位相减差动共焦特性曲线(17)的线性段数据进行直线拟合,通过反向回移差动共焦线性拟合直线(18)S/2位置的回移差动共焦拟合直线(20)的移位拟合直线零点(21)来精确确定测量光束(5)焦点与被测透镜(6)的顶点A重合的位置,进而得到被测透镜(6)顶点A的位置Z1;d)继续沿光轴方向移动测量物镜(4)或被测透镜(6),使测量光束(5)的焦点与被测透镜(6)的后表面顶点B重合;在所述透镜顶点B位置附近轴向扫描测量物镜(4)或被测透镜(6),由横向相减共焦探测系统(7)通过处理测得的测量艾里斑(10)得到锐化共焦特性曲线(15)后再进行双边错位相减处理,得到与测量物镜(4)焦点附近对应的第二错位相减差动共焦特性曲线(22),主控计算机(24)按着步骤c)通过对第二错位相减差动共焦特性曲线(22)进行线性拟合、拟合直线回移及确定回移拟合直线零点精确确定被测透镜(6)的后表面顶点B位置,记录此时被测...

【专利技术属性】
技术研发人员:赵维谦邱丽荣
申请(专利权)人:北京理工大学
类型:发明
国别省市:北京,11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1