【技术实现步骤摘要】
微型柔性机器人、系统及制作方法
本专利技术涉及的是微型机器人领域,特别涉及一种微型柔性机器人、系统及制作方法。
技术介绍
随着机器人技术及传感器技术的发展,微型机器人由于其小型化、轻量化及高度功能集成等特点在救灾、探测、环境监测等领域越来越得到重视与发展。与昆虫重量与体积相似的微型机器人,具有能够在管道内或者狭缝中移动的能力,通过其搭载的不同类型的诸如气体、光线、声音等传感器完成对周围环境的探测感知,并且通过无线方式将信号传输至基站,通过多机器人组网,完成对复杂环境的探测和建模。微型机器人可以广泛应用于地下管道危险气体泄漏检测,抗震救灾与军事监听等领域。现有的微型机器人依据其结构的不同,可以分为硬质框架结构微型机器人与全微型柔性机器人。微型柔性机器人相对于非微型柔性机器人具有更高的鲁棒性以及压力承载恢复特性,能够在受到外部撞击及碾压的情况后仍然保持一定的运动机能。为获得更高的运动性能,一般从柔性材料及柔性结构进行研究。但目前微型柔性机器人运动控制不够灵活。
技术实现思路
本专利技术提供一种微型柔性机器人,运动控制灵活,该微型柔性机器人包括:驱动层、位于驱动层上的上结构 ...
【技术保护点】
1.一种微型柔性机器人,其特征在于,包括:驱动层(1)、位于驱动层(1)上的上结构层(2)、位于驱动层(1)下的下结构层(3),其中,驱动层(1)包括驱动薄膜(4),位于驱动薄膜(4)上侧的上金属层(5)和位于驱动薄膜(4)下侧的下金属层(6);上结构层(2)包括上层腿部(7)和具有镂空结构的上层躯干部(8),所述上层躯干部(8)粘接至所述上金属层(5)的上表面;下结构层(3)包括下层躯干部(9)、下层腿部(10)和尾部(11),所述下层躯干部(9)粘接至所述下金属层(6)的下表面。
【技术特征摘要】
1.一种微型柔性机器人,其特征在于,包括:驱动层(1)、位于驱动层(1)上的上结构层(2)、位于驱动层(1)下的下结构层(3),其中,驱动层(1)包括驱动薄膜(4),位于驱动薄膜(4)上侧的上金属层(5)和位于驱动薄膜(4)下侧的下金属层(6);上结构层(2)包括上层腿部(7)和具有镂空结构的上层躯干部(8),所述上层躯干部(8)粘接至所述上金属层(5)的上表面;下结构层(3)包括下层躯干部(9)、下层腿部(10)和尾部(11),所述下层躯干部(9)粘接至所述下金属层(6)的下表面。2.如权利要求1所述的微型柔性机器人,其特征在于,所述上层腿部(7)和下层腿部(10)为可折叠结构;上层腿部(7)与上层躯干部(8)的夹角范围为[20度,90度];下层腿部(10)与下层躯干部(9)的夹角范围为[20度,90度]。3.如权利要求1所述的微型柔性机器人,其特征在于,上层腿部(7)有两个,分别位于上层躯干部(8)的中轴线的对称两侧;下层腿部(10)有两个,分别位于下层躯干部(9)的中轴线的对称两侧。4.如权利要求1所述的微型柔性机器人,其特征在于,所述镂空结构相对于上层躯干部(8)的中轴线非对称分布。5.如权利要求1所述的微型柔性机器人,其特征在于,所述镂空结构为六边形镂空阵列、圆形镂空阵列、三角形镂空阵列、三角形镂空阵列或矩形镂空阵列。6.如权利要求1所述的微型柔性机器人,其特征在于,还包括上粘性层(12)和下粘性层(13);所述上层躯干部(8)通过上粘性层(12)粘接至所述上金属层(5)的上表面;所述下层躯干部(9)通过下粘性层(13)粘接至所述下金属层(6)的下表面。7.如权利要求6所述的微型柔性机器人,其特征在于,粘性层厚度范围为[10微米,100微米]。8.如权利要求1所述的微型柔性机器人,其特征在于,驱动薄膜(4)采用柔性压电材料。9.如权利要求8所述的微型柔性机器人,其特征在于,所述柔性压电材料为PVDF或者稀土压电陶瓷。10.如权利要求8所述的微型柔性机器人,其特征在于,所述柔性压电材料厚度范围为[1微米,200微米]。11.如权利要求1所述的微型柔性机器人,其特征在于,所述上金属层(5)和所述下金属层(6)采用Au、Ag、Mg、Pd、Ti和Al材料中的其中一种或任意组合。12.如权利要求1所述的微型柔性机器人,其特征在于,所述上金属层(5)和所述下金属层(6)的厚度范围为[10纳米,100纳米]。13.如权利要求1所述的微型柔性机器人,其特征在...
【专利技术属性】
技术研发人员:张旻,梁家铭,吴一川,王晓浩,
申请(专利权)人:清华大学深圳研究生院,
类型:发明
国别省市:广东,44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。