The invention discloses a plaque detection method and equipment, which includes: acquiring stretching image and reference image of vascular image; using segmentation technology to locate and screen the stretching image, obtaining the first narrow area, which is the area corresponding to the blurred plaque location in the vascular image; creating the characteristic curve of the reference image; The first narrow area obtained is analyzed by pseudo-yang on the characteristic curve of the reference image created so as to obtain the second narrow area, which is the precisely positioned area of the plaque in the corresponding vascular image. The patch detection device according to the patch detection method solves the problem of minimizing false positive in blood vessel patch detection.
【技术实现步骤摘要】
一种斑块检测方法及斑块检测设备
本专利技术涉及医疗
,尤其涉及一种斑块检测方法及斑块检测设备。
技术介绍
随着社会经济的高速发展,血管疾病已是关注度极高的话题。血管疾病的治疗技术和预防水平是其中的重中之重。不管是治疗,还是预防,都离不开对血管形态的研究。因此,血管斑块的自动化检测具有重要的研究价值、临床价值和实际意义。然而,在目前的血管斑块检测中,为了保证检测到的斑块是有效的,经常引发假阳增多的问题。这不仅不能为实际工作提供正确的依据,还给医务人员增加了负担。因此,在后续的血管斑块检测中有必要在保证召回率的同时,尽可能减少假阳情况的发生,以满足当前医疗服务的需求。
技术实现思路
本专利技术提供一种斑块检测方法及斑块检测设备,以解决在血管斑块的检测过程中假阳增多的问题。本专利技术一方面提供一种斑块检测方法,所述方法包括:获取血管影像的拉直图像和参考图像;利用分割技术对所述拉直图像进行斑块定位筛选,得到第一狭窄区域,所述第一狭窄区域为对应所述血管影像中斑块模糊定位的区域;创建所述参考图像的特征曲线;在所创建的所述参考图像的特征曲线上对所得到的第一狭窄区域进行假阳分析 ...
【技术保护点】
1.一种斑块检测方法,其特征在于,所述方法包括:获取血管影像的拉直图像和参考图像;利用分割技术对所述拉直图像进行斑块定位筛选,得到第一狭窄区域,所述第一狭窄区域为对应所述血管影像中斑块模糊定位的区域;创建所述参考图像的特征曲线;在所创建的所述参考图像的特征曲线上对所得到的第一狭窄区域进行假阳分析,从而得到第二狭窄区域,所述第二狭窄区域为对应所述血管影像中斑块精准定位的区域。
【技术特征摘要】
1.一种斑块检测方法,其特征在于,所述方法包括:获取血管影像的拉直图像和参考图像;利用分割技术对所述拉直图像进行斑块定位筛选,得到第一狭窄区域,所述第一狭窄区域为对应所述血管影像中斑块模糊定位的区域;创建所述参考图像的特征曲线;在所创建的所述参考图像的特征曲线上对所得到的第一狭窄区域进行假阳分析,从而得到第二狭窄区域,所述第二狭窄区域为对应所述血管影像中斑块精准定位的区域。2.根据权利要求1所述的方法,其特征在于,所述参考图像为如下图像至少之一:短轴体图像,曲面重建CPR图像及原始图像。3.根据权利要求1所述的方法,其特征在于,所述参考图像为短轴体图像时,所述创建所述参考图像的特征曲线包括:利用所述短轴体图像在轴向方向上的面积特征创建对应的面积曲线;或,利用所述短轴体图像在轴向方向上的亮度特征创建对应的亮度曲线。4.根据权利要求1所述的方法,其特征在于,在所创建的所述参考图像的特征曲线上对所得到的第一狭窄区域进行假阳分析,包括:若所述第一狭窄区域在所述特征曲线上存在有特征值变化位置,则确定所述特征值突变位置为真阳,并归集到第二狭窄区域中;若所述第一狭窄区域在所述特征曲线上存在有特征值保持位置,则确定所述特征值保持位置为假阳。5.根据权利要求4所述的方法,其特征在于,所述方法还包括:通过深度学习方法学习所述特征曲线的特征值变化位置的特征,来与对应于所述参考图像的训练曲线进行对比,判断所述训练曲线是否存在真阳;若所述训练曲线存在真阳,则确...
【专利技术属性】
技术研发人员:郑超,肖月庭,阳光,
申请(专利权)人:数坤北京网络科技有限公司,
类型:发明
国别省市:北京,11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。