The invention relates to a defective tooth image recognition method based on depth learning. Firstly, the defective tooth image data set is provided to segment the image in the data set by watershed segmentation algorithm, and the image after region segmentation is obtained. The noise is filtered by Gauss low pass filter and the edge of the image is extracted by Canny operator to obtain the image after edge extraction. Then, the image training data set of in-depth learning is set up and the defect area of the image is marked manually; the deep learning network model of cifar10Net is selected to fine-tune the parameters of the whole connection layer; the tooth image data set is migrated to learn, train and optimize the network structure and parameters; finally, the trained neural network model is saved, and the new image to be identified is input to complete. Image preprocessing and defect area recommendation of dental image. The deep learning theory is applied to the practical and effective defective tooth image recognition method with strong robustness, and can be better applied to the field of intelligent recognition of dental medical images.
【技术实现步骤摘要】
基于深度学习的缺陷牙齿图像识别方法
本专利技术涉及口腔医学领域,特别是一种基于深度学习的缺陷牙齿图像识别方法。
技术介绍
缺陷牙齿的早期诊断是口腔医学领域的一大难题。早期缺陷牙齿的累及区域隐蔽,准确的判断对临床医师治疗计划的制定非常重要。对于缺陷牙齿的病症而言,常见的判别方式为拍摄X线片后,由临床医生通过肉眼观测,或直接由临床医生观察牙齿后判别。但是由于病变在早期阶段,病变不明显,导致肉眼不易分辨。现有临床也采用CT体层图片判别缺陷牙齿的区域。与传统X线片相比,使用CT体层图片虽然准确率相对更高,但因其价格昂贵且辐射等副作用较强,不易在临床推广。计算机的深度学习模型具有很强的特征学习能力,在图像分类识别领域有着重要应用,因此利用计算机对缺陷牙齿图像进行处理分析,能够适当提高缺陷牙齿检测的准确性。随着计算机图像识别技术的发展并在口腔临床中日渐普及,利用深度学习方法对缺陷牙齿X线片图像进行识别,通过设计计算机软件可以实现辅助判别,提高牙齿病症的临床检测敏感性/特异性及准确性,为医师后续对缺陷牙齿的早期诊断或早期干预提供参考,最大限度保存牙体组织,提高人体健康水平。专利 ...
【技术保护点】
1.一种基于深度学习的缺陷牙齿图像识别方法,其特征在于:包括以下步骤:步骤S1:提供缺陷牙齿图像数据集和原始图像,采用分水岭分割算法对所述牙齿图像数据集进行图像分割,分离出牙齿根部、牙齿冠部和背景区域,得到区域分割后的图像;步骤S2:采用高斯低通滤波器滤去所述原始图像的噪声用以减少伪边缘的识别;并用canny算子提取所述原始图像的边缘特征,得到边缘提取后的图像;步骤S3:将所述原始图像与所述区域分割后的图像以及边缘提取后的图像分别叠加,得到区域分割叠加图像和边缘提取叠加图像;保留所述原始图像细节并加强所述原始图像的边缘与区域信息,用以增强分割区域与边缘提取特性;步骤S4:采 ...
【技术特征摘要】
1.一种基于深度学习的缺陷牙齿图像识别方法,其特征在于:包括以下步骤:步骤S1:提供缺陷牙齿图像数据集和原始图像,采用分水岭分割算法对所述牙齿图像数据集进行图像分割,分离出牙齿根部、牙齿冠部和背景区域,得到区域分割后的图像;步骤S2:采用高斯低通滤波器滤去所述原始图像的噪声用以减少伪边缘的识别;并用canny算子提取所述原始图像的边缘特征,得到边缘提取后的图像;步骤S3:将所述原始图像与所述区域分割后的图像以及边缘提取后的图像分别叠加,得到区域分割叠加图像和边缘提取叠加图像;保留所述原始图像细节并加强所述原始图像的边缘与区域信息,用以增强分割区域与边缘提取特性;步骤S4:采用matlab中的TIL对所述原始图像标识缺陷牙齿区域,用以建立用于深度学习模型的训练数据集;步骤S5:采用深度学习的卷积神经网络cifar10Net模型,针对所述牙齿图像,对所述深度学习的卷积神经网络cifar10Net模型的全连接层进行网络结构微调;步骤S6:采用网络结构微调后的深度学习的卷积神经网络cifar10Net模型对所述牙齿图像数据集进行迁移学习,训练并优化所述深度学习的卷积神经网络cifar10Net模型结构与参数;保存训练好的深度学习的卷积神经网络cifar10Net模型;步骤S7:提供一待识别图像,通过Matlab载入待识别图像,对所述待识别图像执行步骤S1到步骤S3,并利用步骤S6中所述的训练...
【专利技术属性】
技术研发人员:于皓,张长源,林秀娇,程辉,张思慧,
申请(专利权)人:福建医科大学附属口腔医院,
类型:发明
国别省市:福建,35
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。