一种发动机电控硅油风扇的节能优化控制方法及系统技术方案

技术编号:21174913 阅读:40 留言:0更新日期:2019-05-22 11:42
本公开提供了一种发动机电控硅油风扇的节能优化控制方法及系统,步骤如下:采集k时刻车辆运行环境数据和发动机内部运行数据,构建k时刻整体运行状态数据集;构建自适应动态规划系统,根据k时刻整体运行状态数据集,计算k时刻的自适应动态规划的性能指标函数、k时刻的自适应规划的效能函数和k+1时刻的自适应动态规划的性能指标预测函数,根据k时刻的性能指标函数和效能函数以及k+1时刻的性能指标预测函数动态优化自适应动态规划系统;获得迭代最优控制策略,输出节能优化控制信号值到硅油风扇,从而实现硅油风扇转速的动态节能控制,实现了自适应动态优化调节控制器,实现了硅油风扇的最优化节能控制,有效提高发动机的寿命和性能。

An Energy-saving Optimal Control Method and System for Electronically Controlled Silicone Oil Fan of Engine

The present disclosure provides an energy-saving optimization control method and system for an electronically controlled silicone oil fan of an engine. The steps are as follows: collecting the vehicle running environment data at k-time and the internal running data of the engine, constructing the data set of the overall running state at k-time, constructing an adaptive dynamic programming system, and calculating the performance index of the adaptive dynamic programming at k-time according to the data set of the overall running state at k-time. The function, the efficiency function of k-time adaptive programming and the performance index prediction function of k+1-time adaptive dynamic programming are used to dynamically optimize the adaptive dynamic programming system according to the performance index function and efficiency function of k-time and the performance index prediction function of k+1-time. The iterative optimal control strategy is obtained, and the energy-saving optimal control signal value is output to the silicon oil fan, thus realizing silicon. The dynamic energy-saving control of oil fan speed realizes the adaptive dynamic optimization controller, realizes the optimal energy-saving control of silicone oil fan, and effectively improves the engine life and performance.

【技术实现步骤摘要】
一种发动机电控硅油风扇的节能优化控制方法及系统
本公开涉及发动机
,特别涉及一种发动机电控硅油风扇的节能优化控制方法及系统。
技术介绍
本部分的陈述仅仅是提供了与本公开相关的
技术介绍
,并不必然构成现有技术。随着国际能源的供应日益紧张和燃油价格的不断攀升,用户对商用车的燃油经济性要求也越来越高,为了保证发动机正常工作,风扇是必不可少。但风扇也是发动机功率的消耗者,最大时约为发动机功率的10%,电控硅油风扇接收发动机电控单元ECU的信号,调节螺线管磁场,改变磁场力,从而改变硅油风扇内部的硅油循环,以此调节风扇转速,并将转速信号反馈给发动机电控单元,以形成闭环控制。现有电控硅油风扇的主要由两种控制方式:第一种根据设定温度参数值,设置硅油风扇微控制器的开/关策略;第二种是利用发动机的ECU控制器,ECU的PID控制器在出厂前标定好固定PID控制参数来控制硅油风扇工作。上述两种通用控制方法,并没有考虑到外界环境、负荷变化自适应调节控制器参数,同时硅油风扇温度调节系统是一个大滞后、大惯性的强非线性的动态优化控制系统,未利用人工智能技术洞悉其内部的动态运行耦合机理建立硅油风扇的动态运行机理模型。因此,目前亟待解决的问题如下:(1)无法根据环境变化和负载变化实现硅油电扇转速的自适应动态调节以实现最优化控制;(2)发动机散热器温度波动大严重影响内燃机的使用寿命和性能和增加发动机的能耗。
技术实现思路
为了解决现有技术的不足,本公开提供了一种发动机电控硅油风扇的节能优化控制方法及系统,通过建立精确的发动机与硅油风扇多时间尺度动态整体模型,实现了自适应动态优化调节控制,从而实现了硅油风扇的最优化节能控制,有效的提高发动机的使用寿命和运行性能。为了实现上述目的,本公开采用如下技术方案:第一方面,本公开提供了一种发动机电控硅油风扇的节能优化控制方法;一种发动机电控硅油风扇的节能优化控制方法,步骤如下:(1)采集k时刻车辆运行环境数据和发动机内部运行数据,构建k时刻整体运行状态数据集;(2)构建自适应动态规划系统,根据k时刻整体运行状态数据集,计算k时刻的自适应动态规划的性能指标函数、k时刻的自适应规划的效能函数和k+1时刻的自适应动态规划的性能指标预测函数,根据k时刻的性能指标函数和效能函数以及k+1时刻的性能指标预测函数动态优化自适应动态规划系统;(3)获得迭代最优控制策略,输出节能优化控制信号值到硅油风扇,从而实现硅油风扇转速的动态节能控制。作为可能的一些实现方式,所述步骤(1)中,所述k时刻整体运行状态数据集为:x(k)=[TCW(k),SCW(k),PCW(k),VCW(k),TKQ(k),PKQ(k),LKQ(k),LOil(k),POil(k),FZS(k),ZFDJ(k),TLQY(k),HQ2(k),JLC(k),JSD(k),TJY(k),TWQ(k),LWQ(k),VZC(k),TSRQ(k)];其中:TCW(k)为车外环境温度值(℃)、SCW(k)为车外环境湿度值(%)、PCW(k)为车外大气压力值(kPa)、VCW(k)为车外风速值(m/s)、TKQ(k)为空气的进气温度值(℃)、PKQ(k)为空气的进气压力值(kPa)、LKQ(k)为空气的进气流量值(m3)、LOil(k)为发动机燃油量值(kg)、POil(k)为油压传感器值(kPa)、FZS(k)为硅油风扇转速值(rpm)、ZFDJ(k)为发动机转速值(rpm)、TLQY(k)为冷却液的温度值(℃)、HQ2(k)为氧传感器数据值(%)、JLC(k)为汽车里程计值(km)、JSD(k)为汽车的车速(km/h),TJY(k)为发动机机油温度值(℃)、TWQ(k)为发动机尾气温度值(℃)、LWQ(k)为发动机尾气流量值(m3/s)、VZC(k)为整车速度值(m/s)、TSRQ(k)为散热器的温度值(℃)。作为可能的一些实现方式,所述步骤(2)中,所述自适应动态规划系统包括硅油风扇自适应动态规划执行网络、硅油风扇自适应动态规划模型网络和硅油风扇自适应动态规划评价网络;所述执行网络用于根据k时刻的整体运行状态数据集计算k时刻硅油风扇转速的控制信号;所述模型网络用于根据k时刻的整体运行状态数据集和k时刻的硅油风扇转速控制信号,计算k+1时刻的整体运行状态预测数据集;所述评价网络用于根据k时刻的整体运行状态数据集计算硅油风扇在k时刻的自适应动态规划的性能指标函数,根据k+1时刻的整体运行状态预测数据集估算硅油风扇在k+1时刻的自适应动态规划的性能指标预测函数。作为可能的一些实现方式,以硅油风扇在k+1时刻的自适应动态规划的性能指标预测函数与k时刻的效能函数之和无限接近k时刻的自适应动态规划的性能指标函数为目标,对自适应动态规划系统进行动态优化。作为可能的一些实现方式,将k+1时刻的自适应动态规划的性能指标预测函数与k时刻硅油风扇的自适应规划的效能函数相加后,再与k时刻的自适应动态规划的性能指标函数进行做差分析,根据差值判断k+1时刻的自适应动态规划的性能指标预测函数与k时刻的自适应动态规划的性能指标函数的接近程度,根据接近程度对硅油风扇自适应动态规划执行网络和硅油风扇自适应动态规划评价网络进行在线训练。作为可能的一些实现方式,硅油风扇自适应动态规划模型网络的构造方法为:构建基于深度学习的卷积神经网络,基于Sigmoid函数归一化k时刻运行状态数据集x(k)和k时刻的硅油风扇转速控制信号u(k),根据k时刻运行状态数据集x(k)、k时刻的硅油风扇转速控制信号u(k)和k+1时刻运行状态预测数据集x(k+1)训练卷积神经网络;所述训练方法如下:601;卷积层为3层,输入层为1000*21*10三维向量,其中,1000为1000组运行数据,21为21个影响因素,10为时间维度,卷积层设定卷积核的个数为256,卷积核的区域大小为4*4;602:池化层采用Max-Pooling,采样层的区域大小为4*4;603:激活函数为双曲正切函数tanh,其数学表达式为:604:采用Adam优化算法,利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率,选取优化学习率Lr=0.05;605:全连接层设定为512个神经元,设定Dropout参数为0.5。606:设定发动机和硅油风扇整体动态模型的输出层为20*10的两维向量,其中,20为预测向量,10为时间维度;607:得出最优硅油风扇自适应动态规划模型网络的权重矩阵Wm,获得发动机和硅油风扇的硅油风扇自适应动态规划模型网络。作为可能的一些实现方式,硅油风扇自适应动态规划评价网络的在线训练方法为:701采用BP神经网络三层结构,其输入为x(k),输出为J(x(k)),Wc为BP神经网络的参数权值,训练目标为最小化输出误差其中,x(k)为k时刻发动机和硅油风扇的整体运行状态数据集,u(k)为k时刻的硅油风扇转速的控制信号值,J(x(k))为硅油风扇在k时刻的自适应动态规划的性能指标函数;702评价网络采用20个输入神经元,52个隐藏层神经元,1个输出神经元的结构,隐藏层采用双极性sigmoidal函数,输出层采用线性函数purelin;703评价网络的训练参数权值Wc的目标为最小化输出误差Ec(k),采用梯度下降法优化本文档来自技高网...

【技术保护点】
1.一种发动机电控硅油风扇的节能优化控制方法,其特征在于,步骤如下:(1)采集k时刻车辆运行环境数据和发动机内部运行数据,构建k时刻整体运行状态数据集;(2)构建自适应动态规划系统,根据k时刻整体运行状态数据集,计算k时刻的自适应动态规划的性能指标函数、k时刻的自适应规划的效能函数和k+1时刻的自适应动态规划的性能指标预测函数,根据k时刻的性能指标函数和效能函数以及k+1时刻的性能指标预测函数动态优化自适应动态规划系统;(3)获得迭代最优控制策略,输出节能优化控制信号值到硅油风扇,从而实现硅油风扇转速的动态节能控制。

【技术特征摘要】
1.一种发动机电控硅油风扇的节能优化控制方法,其特征在于,步骤如下:(1)采集k时刻车辆运行环境数据和发动机内部运行数据,构建k时刻整体运行状态数据集;(2)构建自适应动态规划系统,根据k时刻整体运行状态数据集,计算k时刻的自适应动态规划的性能指标函数、k时刻的自适应规划的效能函数和k+1时刻的自适应动态规划的性能指标预测函数,根据k时刻的性能指标函数和效能函数以及k+1时刻的性能指标预测函数动态优化自适应动态规划系统;(3)获得迭代最优控制策略,输出节能优化控制信号值到硅油风扇,从而实现硅油风扇转速的动态节能控制。2.如权利要求1所述的发动机电控硅油风扇的节能优化控制方法,其特征在于,所述步骤(1)中,所述k时刻整体运行状态数据集为:x(k)=[TCW(k),SCW(k),PCW(k),VCW(k),TKQ(k),PKQ(k),LKQ(k),LOil(k),POil(k),FZS(k),ZFDJ(k),TLQY(k),HQ2(k),JLC(k),JSD(k),TJY(k),TWQ(k),LWQ(k),VZC(k),TSRQ(k)];其中:TCW(k)为车外环境温度值(℃)、SCW(k)为车外环境湿度值(%)、PCW(k)为车外大气压力值(kPa)、VCW(k)为车外风速值(m/s)、TKQ(k)为空气的进气温度值(℃)、PKQ(k)为空气的进气压力值(kPa)、LKQ(k)为空气的进气流量值(m3)、LOil(k)为发动机燃油量值(kg)、POil(k)为油压传感器值(kPa)、FZS(k)为硅油风扇转速值(rpm)、ZFDJ(k)为发动机转速值(rpm)、TLQY(k)为冷却液的温度值(℃)、HQ2(k)为氧传感器数据值(%)、JLC(k)为汽车里程计值(km)、JSD(k)为汽车的车速(km/h),TJY(k)为发动机机油温度值(℃)、TWQ(k)为发动机尾气温度值(℃)、LWQ(k)为发动机尾气流量值(m3/s)、VZC(k)为整车速度值(m/s)、TSRQ(k)为散热器的温度值(℃)。3.如权利要求1所述的发动机电控硅油风扇的节能优化控制方法,其特征在于,所述步骤(2)中,所述自适应动态规划系统包括硅油风扇自适应动态规划执行网络、硅油风扇自适应动态规划模型网络和硅油风扇自适应动态规划评价网络;所述执行网络用于根据k时刻的整体运行状态数据集计算k时刻硅油风扇转速的控制信号;所述模型网络用于根据k时刻的整体运行状态数据集和k时刻的硅油风扇转速控制信号,计算k+1时刻的整体运行状态预测数据集;所述评价网络用于根据k时刻的整体运行状态数据集计算硅油风扇在k时刻的自适应动态规划的性能指标函数,根据k+1时刻的整体运行状态预测数据集估算硅油风扇在k+1时刻的自适应动态规划的性能指标预测函数。4.如权利要求3所述的发动机电控硅油风扇的节能优化控制方法,其特征在于,以硅油风扇在k+1时刻的自适应动态规划的性能指标预测函数与k时刻的效能函数之和无限接近k时刻的自适应动态规划的性能指标函数为目标,对自适应动态规划系统进行动态优化。5.如权利要求4所述的发动机电控硅油风扇的节能优化控制方法,其特征在于,将k+1时刻的自适应动态规划的性能指标预测函数与k时刻硅油风扇的自适应规划的效能函数相加后,再与k时刻的自适应动态规划的性能指标函数进行做差分析,根据差值判断k+1时刻的自适应动态规划的性能指标预测函数与k时刻的自适应动态规划的性能指标函数的接近程度,根据接近程度对硅油风扇自适应动态规划执行网络和硅油风扇自适应动态规划评价网络进行在线训练。6.如权利要求5所述的发动机电控硅油风扇的节能优化控制方法,其特征在于,硅油风扇自适应动态规划模型网络的构造方法为:构建基于深度学习的卷积神经网络,基于Sigmoid函数归一化k时刻运行状态数据集x(k)和k时刻的硅油风扇转速控制信号u(k),根据k时刻运行状态数据集x(k)、k时刻的硅油风扇转速控制信号u(k)和k+1时刻运行状态预测数据集x(k+1)训练卷积神经网络;所述训练方法如下:601;卷积层为3层,输入层为1000*21*10三维向量,其中,1000为1000组运行数据,21为21个影响因素,10...

【专利技术属性】
技术研发人员:赵峰张广渊王国锋王书新谢振华靳华磊
申请(专利权)人:山东交通学院
类型:发明
国别省市:山东,37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1