一种拉盖尔高斯涡旋光束的产生方法技术

技术编号:21038311 阅读:142 留言:0更新日期:2019-05-04 07:27
一种拉盖尔高斯涡旋光束的产生方法,包括优化滤波小孔孔径,搭建及调整光路等步骤。本发明专利技术利用了大型激光系统中——4F像传递和空间滤波装置及其简单易操作的特点,利用频域圆孔滤波不影响波前的螺旋特性,通过计算选取最佳的滤波孔径使高斯涡旋光束转化为拉盖尔高斯涡旋光束,克服了传统的高斯涡旋光束的光强随着传播距离变化的缺点,结合光学参量啁啾脉冲放大或者啁啾脉冲激光放大技术,可用于产生具有广泛应用前景的相对论量级涡旋激光脉冲。

A Method of Generating Laguerre-Gauss Vortex Beam

【技术实现步骤摘要】
一种拉盖尔高斯涡旋光束的产生方法
本专利技术涉及超强超短激光系统,特别是一种获得适应于光学参量啁啾脉冲放大或者啁啾脉冲激光放大的拉盖尔高斯涡旋光束的方法。
技术介绍
超强超短激光技术的迅猛发展,使得光与物质相互作用的探索研究已经迈入了相对论领域。超强超短激光脉冲的电场已经可以达到甚至是远超原子库伦场109V/cm的量级,其对应的峰值强度约为1014-1015W/cm2。此时,激光电场已经可以影响和操控原子当中的电子运动、分布和电离等过程。当光强进一步提高到1017-1018W/cm2后(百太瓦级激光即可达到),此时对应的超强超短激光脉冲在与物质的作用过程中,脉冲上升沿的电磁场迅速电离了物质成分生成等离子体,超短的时间尺度(飞秒)内等离子体来不及扩散;主脉冲部分实际是在与等离子体相互作用。电离的自由电子在主脉冲的电磁场中的振荡很容易达到相对论量级。此外飞秒的超短时域尺度对于超快物理过程的探测有着重要意义。当超强超短激光带上轨道角动量,即超强超短涡旋激光;则上述超强超短激光与物质原子、分子、离子或是等离子体相互作用时,则需要考虑一个重要的额外物理量的影响——轨道角动量。从量子视角看,无论是分子系统、原子系统还是自由电子的态跃迁都必须遵守能量守恒、动量守恒和轨道角动量守恒。因此在涡旋激光参与分子、离子、原子或自由电子相互作用时轨道角动量守恒就需要进一步考虑了,在轨道角动量不守恒情况下的禁止跃迁此时则变得可能。而相对论涡旋激光与等离子体之间的相互作用则更加的丰富与引人兴趣然而,借助于现有的激光放大技术,如光学参量啁啾脉冲放大或者啁啾脉冲激光放大技术,直接对高斯涡旋光束进行放大却受限于高斯涡旋光束的近场快速变化特性。现有的激光放大技术更加适用于发散性小,横向光强分布近似不变的光束,如大口径高斯光束和拉盖尔高斯涡旋光束。因此,为了获得超强超短涡旋激光,如何高效获取拉盖尔高斯涡旋光束的问题随之而来。
技术实现思路
本专利技术的目的是提出了一种获得的拉盖尔高斯涡旋光束的方法,以高效获得发散性小、光束截面分布近似不变的适用于现有超强超短激光放大系统的拉盖尔高斯涡旋光束。该方法利用了现有的超强超短激光系统当中常用的4f像传递和空间滤波装置,简单易操作的实现了拉盖尔高斯涡旋光束的获取。本专利技术的技术解决方案如下:一种拉盖尔高斯涡旋光束的产生方法,包括如下步骤:①确定参数,包括激光波长、光束半径、第一透镜的焦距,根据波长、第一透镜的焦距,将确定半径的高斯涡旋光束傅里叶变换至频域;②假定一个滤波孔径,对频域光强进行滤波,将得到的逆傅里叶变换回空域;将变换之后的空域与目标拉盖尔高斯涡旋光束进行比较,得到拉盖尔高斯涡旋光束所占比重;③选取不同的滤波孔径,重复②过程,对比不同孔径下拉盖尔高斯涡旋光束所占比重,选取比重最大所对应的滤波小孔孔径,制作对应孔径的滤波小孔;④搭建光路:在光路入射方向依次放置相位调制元件、第一透镜、滤波小孔和第二透镜;⑤调整相位调制元件的位置,使相位调制元件的中心与入射光束的中心重合;⑥调整第一透镜到相位调制元件的距离,使得相位调制元件位于第一透镜的前焦面上,调整第一透镜的位置,使得入射光束的中心与第一透镜的中心重合;⑦调整滤波小孔到第一透镜的距离,使滤波小孔位于第一透镜的后焦面上,调整滤波小孔的位置,使滤波小孔与入射光束同轴;⑧调整第二透镜到滤波小孔的距离,使得滤波小孔位于第二透镜的前焦面上,调整第二透镜的位置,使第二透镜与入射光束同轴;⑨入射激光光束经所述的相位调制元件后附上螺旋相位,成为高斯涡旋光束,该高斯涡旋光束经第一个透镜傅里叶变换致焦平面上面的频域空间,焦平面上面的滤波小孔对频域的高斯涡旋光束进行调制后,第二透镜将频域调制后高斯涡旋光束傅里叶变换致空间域,完成像传递的作用,在第二透镜的后焦平面上得到拉盖尔高斯涡旋光束。所用滤波小孔的大小与初始的激光光束的波长、光斑大小,以及第一透镜的焦距相关,且对滤波小孔的大小变化不敏感。所述的相位调制元件是螺旋相位板、空间光调制器、或者q波片,完成对激光束螺旋相位的调制。设第一透镜的焦距f1,第二透镜的焦距f2,当f1>f2时,透镜组为光束缩束装置;当f1<f2时,透镜组为光束扩束装置;当f1=f2时,透镜组为像传递装置。所述的滤波小孔位于第一个透镜的后焦平面也是第二个透镜的前焦平面上。激光系统前端出来的激光光束经过相位调制元件,附加上螺旋相位,成为高斯涡旋光束;高斯涡旋光束经过4f像传递系统时,由第一个透镜傅里叶变换致公共焦平面上面的频域空间;公共焦平面上面的滤波小孔对焦平面频率域的高斯涡旋光束进行调制;第二个透镜将频率域调制后高斯涡旋光束傅里叶变换致空间域,完成像传递的作用,得到拉盖尔高斯涡旋光束。本专利技术不影响光束波前的螺旋特性,而仅仅改变光束光强的分布。本专利技术具有以下技术效果:1)经激光系统前端出来的激光光束,经过相位调制元件,成为高斯涡旋光束,经过4f系统用特定大小的小孔进行空间滤波,得到了的拉盖尔高斯涡旋光束。2)利用激光系统当中的常用的4f像传递空间滤波装置,简单易行,无需额外扩展激光系统,使得激光系统结构紧凑。3)解决了高斯涡旋光束截面光强分布在近场区快速变化的问题,得到了发散性小、截面光强近似不变的拉盖尔高斯涡旋光束,适用于激光系统后续的放大、压缩、聚焦等操作;为产生具有广泛应用前景的相对论量级的超强超短涡旋激光扫除了障碍。4)适用于不同工作波段,只须根据需要选择不同大小的滤波小孔即可。不仅适用于飞秒量级的激光系统,同样适用于皮秒、纳秒量级的激光系统,只需注意元件的阈值。不仅适用于信号光路,同样适用于泵浦光路。5)本专利技术的技术方案得到的拉盖尔高斯涡旋光束不仅适用于啁啾脉冲激光放大,同样适用于光学参量啁啾脉冲放大。附图说明图1为本专利技术一种获得拉盖尔高斯涡旋光束的方法的结构示意图。具体实施方式图1为本专利技术一种获得拉盖尔高斯涡旋光束的方法的结构示意图,由图可见,本专利技术一种获得拉盖尔高斯涡旋光束的方法主要包括相位调制元件,透镜组f1和f2构成的4f像传递系统,透镜公共焦平面上面的滤波小孔。相位调制元件可以是螺旋相位板、空间光调制器、或者q波片。由透镜组f1和f2构成的4f像传递系统,f1和f2可以不相等。当f1>f2时,透镜组为光束缩束装置;当f1<f2时,透镜组为光束扩束装置;当f1=f2时,透镜组为严格意义上的像传递装置。滤波小孔位于透镜组的第一个透镜的后焦平面也是第二个透镜的前焦平面上。其大小与初始的激光光束的波长、光斑大小,以及透镜组的第一个透镜的焦距f1相关。其具体大小需要通过优化计算得到。激光系统前端出来的基模高斯光束经过相位调制元件,附加上螺旋相位,成为高斯涡旋光束;高斯涡旋光束经过4f像传递系统时,由第一个透镜傅里叶变换致焦平面上面的频域空间;焦平面上面的滤波小孔对频域的高斯涡旋光束进行调制;第二个透镜将频域调制后高斯涡旋光束傅里叶变换致空间域,完成像传递的作用,得到发散性小、截面光强近似不变的拉盖尔高斯涡旋光束。具体操作步骤为:1、优化计算滤波小孔的孔径,具体如下:确定参数,包括激光波长、光束半径、第一透镜的焦距。根据波长、第一透镜的焦距,将确定半径的高斯涡旋光束傅里叶变换至频域。2、假定一个滤波孔径,对频域光强进行滤波,将得到的结果逆本文档来自技高网
...

【技术保护点】
1.一种拉盖尔高斯涡旋光束的产生方法,其特征在于包括如下步骤:①确定参数,包括激光波长、光束半径、第一透镜的焦距,根据波长、第一透镜的焦距,将确定半径的高斯涡旋光束傅里叶变换至频域;②假定一个滤波孔径,对频域光强进行滤波,将得到的逆傅里叶变换回空域;将变换之后的空域与目标拉盖尔高斯涡旋光束进行比较,得到拉盖尔高斯涡旋光束所占比重;③选取不同的滤波孔径,重复②过程,对比不同孔径下拉盖尔高斯涡旋光束所占比重,选取比重最大所对应的滤波小孔孔径,制作对应孔径的滤波小孔;④搭建光路:在光路入射方向依次放置相位调制元件、第一透镜、滤波小孔和第二透镜;⑤调整相位调制元件的位置,使相位调制元件的中心与入射光束的中心重合;⑥调整第一透镜到相位调制元件的距离,使得相位调制元件位于第一透镜的前焦面上,调整第一透镜的位置,使得入射光束的中心与第一透镜的中心重合;⑦调整滤波小孔到第一透镜的距离,使滤波小孔位于第一透镜的后焦面上,调整滤波小孔的位置,使滤波小孔与入射光束同轴;⑧调整第二透镜到滤波小孔的距离,使得滤波小孔位于第二透镜的前焦面上,调整第二透镜的位置,使第二透镜与入射光束同轴;⑨入射激光光束经所述的相位调制元件后附上螺旋相位,成为高斯涡旋光束,该高斯涡旋光束经第一个透镜傅里叶变换致焦平面上面的频域空间,焦平面上面的滤波小孔对频域的高斯涡旋光束进行调制后,第二透镜将频域调制后高斯涡旋光束傅里叶变换致空间域,完成像传递的作用,在第二透镜的后焦平面上得到拉盖尔高斯涡旋光束。...

【技术特征摘要】
1.一种拉盖尔高斯涡旋光束的产生方法,其特征在于包括如下步骤:①确定参数,包括激光波长、光束半径、第一透镜的焦距,根据波长、第一透镜的焦距,将确定半径的高斯涡旋光束傅里叶变换至频域;②假定一个滤波孔径,对频域光强进行滤波,将得到的逆傅里叶变换回空域;将变换之后的空域与目标拉盖尔高斯涡旋光束进行比较,得到拉盖尔高斯涡旋光束所占比重;③选取不同的滤波孔径,重复②过程,对比不同孔径下拉盖尔高斯涡旋光束所占比重,选取比重最大所对应的滤波小孔孔径,制作对应孔径的滤波小孔;④搭建光路:在光路入射方向依次放置相位调制元件、第一透镜、滤波小孔和第二透镜;⑤调整相位调制元件的位置,使相位调制元件的中心与入射光束的中心重合;⑥调整第一透镜到相位调制元件的距离,使得相位调制元件位于第一透镜的前焦面上,调整第一透镜的位置,使得入射光束的中心与第一透镜的中心重合;⑦调整滤波小孔到第一透镜的距离,使滤波小孔位于第一透镜的后焦面上,调整滤波小孔的位置,使滤波小孔与入射光束同轴;⑧调整第二透镜到滤波小孔的距离,使得滤波小孔位于第二透镜的前焦面上,调整第二透镜的位置,使第二透镜与入射光...

【专利技术属性】
技术研发人员:梁晓燕潘望军徐露
申请(专利权)人:中国科学院上海光学精密机械研究所
类型:发明
国别省市:上海,31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1