一种钕铁硼磁体的制备方法技术

技术编号:20007899 阅读:17 留言:0更新日期:2019-01-05 19:04
本发明专利技术公开了一种钕铁硼磁体的制备方法,具体方法将设计成分配好的原料通过高真空熔炼得到钕铁硼合金。将钕铁硼合金磨成粉,得到粉末状的钕铁硼合金。粉末状的钕铁硼合金经过磁场取向成型,然后经过冷等静压,压制成粗坯。粗坯烧结后采用微波快速升温对磁体进行回火。传统的回火方式升温速率较慢,热处理后磁体磁性能提升不高。采用微波升温回火,升温速率较快,富Nd相分布较均匀,无大块富Nd相团聚,钕铁硼磁体磁性能较传统回火方式有较大提升,并且效率高,时间短。

Preparation of a Nd-Fe-B magnet

The invention discloses a preparation method of Nd-Fe-B magnet, in which Nd-Fe-B alloy is obtained by high vacuum melting of raw materials with designed components. The powder Nd-Fe-B alloy was obtained by grinding Nd-Fe-B alloy into powder. The powdered Nd-Fe-B alloy is formed by magnetic field orientation, and then pressed into rough billet by cold isostatic pressing. After sintering, the magnet was tempered by microwave heating. The traditional tempering method has a slow heating rate, and the magnetic properties of magnets are not improved after heat treatment. With microwave tempering, the heating rate is faster, the distribution of Nd-rich phases is more uniform, and there is no agglomeration of large Nd-rich phases. The magnetic properties of Nd-Fe-B magnets are better than those of traditional tempering methods, with high efficiency and short time.

【技术实现步骤摘要】
一种钕铁硼磁体的制备方法
本专利技术属于稀土磁材料技术和工艺领域,特别提供一种钕铁硼磁体的制备方法。
技术介绍
第三代稀土永磁材料NdFeB号称“磁王”,具有优异的磁性能,目前市场上能达到的最大磁能积(BH)max大约为50-55MGOe,是第一代稀土永磁材料的8-10倍,第二代稀土永磁材料的3-5倍。正因如此,钕铁硼永磁体在很多方面有着广泛的应用,成为当今新能源磁性材料主流。烧结钕铁硼永磁材料的最大磁能积(BH)max的实际值已经可以做到快接近理论值(525.4KJ/m3)的90%以上,然而矫顽力却还在理论计算值的1/3到1/2左右。因此如何通过改善钕铁硼的制备工艺,发挥其最大性能作用,是当今稀土永磁材料领域应用研究的一个热点。改变原料中元素配比、控制各工艺参数和磁体的微观组织对钕铁硼磁性能的提高影响很大。当前钕铁硼磁体制备工艺普遍存在生产效率低、组织不均匀等缺点。比如传统的回火方法升温速率极慢,每分钟升温速率不足10℃,工作效率较低,成本高,富Nd相在角隅处团聚较多。针对上述劣势,本专利通过研究烧结钕铁硼磁体的制备工艺对钕铁硼磁体晶体结构及磁性能的影响,提出一种钕铁硼磁体的制备方法,改变钕铁硼磁体内部的微观结构,以提高钕铁硼磁体的综合磁性能和工作效率。
技术实现思路
针对现有技术存在的问题,本申请提供了一种钕铁硼磁体的制备方法,以达到提高磁性能、节约时间、提高效率、降成本的效果。为实现上述目的,本专利技术技术方案如下:一种钕铁硼磁体的制备方法,包括如下步骤:1)、将设计的原料通过速凝熔炼得到钕铁硼铸片。2)、将1)步骤的铸片磨成粉,得到钕铁硼合金粉末。3)、就2)步骤所述的粉末状的钕铁硼合金粉末经过磁场取向成型,然后经过冷等静压,压制成粗坯。4)、将3)步骤的粗坯进行烧结,得到致密度为7.45-7.55g·cm-3的烧结坯体。5)、对烧结后的坯体采用微波快速升温的方式进行回火热处理:采用微波加热方式进行气氛热处理,一级回火温度为850-950℃,设置升温速率为20-100℃/min,保温时长为3-5h;二级回火温度为480-550℃,设置升温速率为20-100℃/min,保温时长为5-6h。最终测量磁性能。作为优选的技术分方案:步骤5)中微波加热功率为2kw-3kw,加热过程中随升温速率的变化作相应调整。设置升温速率优选为20-40℃/min。本专利技术所述钕铁硼磁体的制备方法,其特征在于:所述钕铁硼磁体的成分组成为重量百分比:PrNd:30-31.5%、Cu:0.1-0.5%、Ga:0.1-0.3%、Co:0.5-1.0%、B:0.9-0.98%、Fe为余量。本专利技术所述钕铁硼磁体的制备方法,其特征在于,具体步骤如下:1)、将按照设计成分配好的原料通过高真空熔炼速凝得到厚度为0.3-0.6mm的钕铁硼合金铸片;2)、将所得钕铁硼合金铸片磨成粉,得到钕铁硼合金粉末,制粉工艺为:先将合金铸片进行氢破处理粗破碎,加入0.05wt.%-0.10wt.%的分散剂、0.03wt.%-0.08wt.%的润滑剂、0.03wt.%试剂,然后气流磨制成平均粒径为3~4μm的钕铁硼合金粉末;3)、将钕铁硼合金粉末经过磁场取向成型,然后经过冷等静压,压制成粗坯,所述磁场取向的强度为2.0-3.0T,冷等静压压力为200-300MPa;4)、将所得粗坯进行烧结,得到密度为7.45-7.55g·cm-3的烧结坯体,烧结工艺为:在真空烧结炉中1000-1100℃温度下烧结4-5h,真空烧结炉的升温速率为8℃/min;5)、对烧结后的坯体采用微波快速升温的方式进行回火热处理:采用微波加热方式进行气氛(优选氩气气氛)热处理,一级回火温度为850-950℃,设置升温速率为20-100℃/min,保温时长为3-5h;二级回火温度为480-550℃,设置升温速率为20-100℃/min,保温时长为5-6h。其中:所述分散剂为聚乙二醇,润滑剂为硼酸三丁酯,试剂为120#汽油。本专利技术的优势在于:1)本制备方法可显著提高钕铁硼的生产效率,比常规制备方法节能20%~30%;2)微波热处理可使得磁体内外同时加热,使磁体内部温度梯度很小,内应力小,提高磁体的一致性;3)采用特定的分散剂+润滑剂+试剂的方法可使气流磨磨出的粉末粒度均匀,一致性好;4)经过此制备方法制备出的钕铁硼磁体富Nd相分布更加平缓、均匀,无大块富Nd相团聚,有效地隔绝了磁交换作用,提高磁性能。附图说明图1传统加热方式与微波加热方式对比(其中a为传统加热,b为微波加热)。图2传统回火与微波回火升温曲线图。具体实施方式为了使本领域技术人员更好地理解本专利技术的技术方案能予以实施,下面结合具体实施例对本专利技术作进一步说明,但所举实施例不作为对本专利技术的限定。实施例1设计成分为(PrNd)30Fe68.50Cu0.10Ga0.10Co0.50Zr0.10B0.70(wt.%),依上述成分进行配料,将配制好的金属原料经过熔炼速凝得到厚度为0.3mm的钕铁硼合金速凝片;将所得到的钕铁硼合金速凝片放入氢破炉中进行氢爆,得到的钕铁硼颗粒尺寸大概为10μm;随后在气流磨中加入0.05wt.%的分散剂(聚乙二醇)、0.03wt.%的润滑剂(硼酸三丁酯)、0.03wt.%试剂(120#汽油)持续磨2小时磨成3-4μm的钕铁硼磁体合金粉末,将所得粉末在2.0T磁场中取向成型并经220MPa冷等静压,得到压坯;将冷等静压压完后的压坯放入烧结炉中烧结,烧结温度为1060℃,时间为4h;随后的两次回火分两批进行。第一批烧坯使用传统的真空回火炉进行两次退火,保证在真空度为8×10-4Pa以下,导入程序,最大升温速率较慢,为8℃/min;第二批烧坯使用微波加热快速升温回火,采用气氛热处理,加热功率随升温速率的变化作相应调整,范围在2kw-3kw之间。石英转盘上依次放置保温砖,保温棉,坩埚用保温棉包裹。然后设定温控仪的加热程序,这里设定的升温速率为20、40、60、80、100℃/min。回火的温度和时间一样,首先在890℃保温3小时,冷却到室温,然后再升温至520℃保温5小时,冷却到室温。表1热处理工艺参数实施例2设计成分为(PrNd)30.80Fe67.01Cu0.12Ga0.20Co0.8Zr0.10B0.97(wt.%),依上述成分进行配料,将配制好的金属原料经过熔炼速凝得到厚度为0.3mm的钕铁硼合金速凝片;将所得到的钕铁硼合金速凝片放入氢破炉中进行氢爆,得到的钕铁硼颗粒尺寸大概为10μm;随后在气流磨中加入0.08wt.%的分散剂(聚乙二醇)、0.05wt.%的润滑剂(硼酸三丁酯)、0.03wt.%试剂(120#汽油)持续磨2小时磨成3-4μm的钕铁硼磁体合金粉末,将所得粉末在2.2T磁场中取向成型并经240MPa冷等静压,得到压坯;将冷等静压压完后的压坯放入烧结炉中烧结;随后的两次回火分两批进行。第一批烧坯使用传统的真空回火炉进行两次退火,保证在真空度为8×10-4Pa以下,导入程序,最大升温速率较慢,为8℃/min;第二批烧坯使用微波加热快速升温回火,采用气氛热处理,加热功率随升温速率的变化作相应调整,范围在2kw-3kw之间。石英转盘上依次放置保温砖,保温棉,坩埚用保温棉包裹。然后设定温控仪的加热程序,这里本文档来自技高网...

【技术保护点】
1.一种钕铁硼磁体的制备方法,其特征在于:1)、将按照设计成分配好的原料制备成钕铁硼合金铸片;2)、将所得钕铁硼合金铸片磨成粉,得到平均粒径为3~4μm的钕铁硼合金粉末;3)、将钕铁硼合金粉末经过磁场取向成型,然后经过冷等静压,压制成粗坯,所述磁场取向的强度为2.0‑3.0T,冷等静压压力为200‑300MPa;4)、将所得粗坯进行烧结,烧结工艺为:在真空烧结炉中1000‑1100℃温度下烧结4‑5h,真空烧结炉的升温速率最大为8℃/min;5)、对烧结后的坯体采用微波快速升温的方式进行回火热处理:采用微波加热方式进行气氛热处理,一级回火温度为850‑950℃,设置升温速率为20‑100℃/min,保温时长为3‑5h;二级回火温度为480‑550℃,设置升温速率为20‑100℃/min,保温时长为5‑6h。

【技术特征摘要】
1.一种钕铁硼磁体的制备方法,其特征在于:1)、将按照设计成分配好的原料制备成钕铁硼合金铸片;2)、将所得钕铁硼合金铸片磨成粉,得到平均粒径为3~4μm的钕铁硼合金粉末;3)、将钕铁硼合金粉末经过磁场取向成型,然后经过冷等静压,压制成粗坯,所述磁场取向的强度为2.0-3.0T,冷等静压压力为200-300MPa;4)、将所得粗坯进行烧结,烧结工艺为:在真空烧结炉中1000-1100℃温度下烧结4-5h,真空烧结炉的升温速率最大为8℃/min;5)、对烧结后的坯体采用微波快速升温的方式进行回火热处理:采用微波加热方式进行气氛热处理,一级回火温度为850-950℃,设置升温速率为20-100℃/min,保温时长为3-5h;二级回火温度为480-550℃,设置升温速率为20-100℃/min,保温时长为5-6h。2.按照权利要求1所述钕铁硼磁体的制备方法,其特征在于:步骤5)中微波加热功率为2kw-3kw,加热过程中随升温速率的变化作相应调整。3.按照权利要求1所述钕铁硼磁体的制备方法,其特征在于:步骤5)中设置升温速率为20-40℃/min。4.按照权利要求1所述钕铁硼磁体的制备方法,其特征在于:所述钕铁硼磁体的成分组成为重量百分比:PrNd:30-31.5%、Cu:0.1-0.5%、Ga:0.1-0.3%、Co:0.5-1.0%、B:0.9-0.98%、Fe为余量。5...

【专利技术属性】
技术研发人员:钟震晨曾亮亮刘仁辉周头军李家节黄祥云谢伟诚潘为茂
申请(专利权)人:江西理工大学
类型:发明
国别省市:江西,36

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1