基于稳压输出式的超级电容双闭环升降压充电控制电路制造技术

技术编号:19597237 阅读:39 留言:0更新日期:2018-11-28 06:14
本发明专利技术涉及一种基于稳压输出式的超级电容双闭环升降压充电控制电路。本发明专利技术包括电源与升降压主电路、测控电路,具体包括超级电容、MOS管、芯片、电压运放、电流运放、检测运放、电源稳压管、给定稳压管、驱动稳压管、二极管、滤波电感、变压电感、电源电容、给定电容、驱动电容、变压电容、反馈电容、电压正端电容、电压负端电容、电流负端电容、电流正端电容、检测电容等。本发明专利技术具有动态恒流充电、稳态稳压充电的控制功能,以确保超级电容在宽广的充电电源电压条件下进行安全、可靠、快速的稳压充电与稳压控制,本发明专利技术电路简单、成本低、可靠性高、通用性好,易于模块化、产品系列化。

【技术实现步骤摘要】
基于稳压输出式的超级电容双闭环升降压充电控制电路
本专利技术属于工业测控领域,涉及一种电路,特别涉及一种基于稳压输出式的超级电容双闭环升降压充电控制电路,适用于使用超级电容储能、供电与续航控制的应用场合。
技术介绍
超级电容在现代新能源储能、各类军民设备续航供电与控制方面,得到日益广泛的应用。超级电容应用技术中的一个重要问题之一就是在电源电压宽广范围内,根据超级电容的额定电压约束要求,进行稳压快速充电控制问题,目前常用的稳压式充电方法存在的不足之处在于:一是初始充电电流冲击大无法控制,且过渡过程时间长;二是基于专用恒流稳压充电芯片的方案适用的超级电容储能容量小,且现有方案中的电路较复杂,成本较高。因此,如何设计一种在超级电容额定电压约束下,在宽广的充电电源供电电压条件进行高效、快速、安全的超级电容充电控制方案,特别是能适于新能源电力转换中的高压大容量储能应用场合,是本专利技术的出发点。
技术实现思路
本专利技术的目的是针对现有技术存在的不足,提出一种基于稳压输出式的超级电容双闭环升降压充电控制电路。该电路以运行于PWM控制方式的大功率MOS管为充电过程的高效功率控制元件,以PWM电源芯片作为大功率MOS管的栅极驱动电路,充电主电路采用同极性输出式的升降压型DC/DC变换电路,并以满幅运放(railtorail运放)为双闭环控制电路,具有动态恒流充电、稳态稳压充电的控制能,以确保超级电容在宽广的充电电源电压条件下进行安全、可靠、快速的充电与稳压控制。本专利技术电路包括电源与升降压主电路、测控电路。电源与升降压主电路包括超级电容SC1、PWM芯片IC1、MOS管VT1、电源稳压管DW1、给定稳压管DW2、驱动稳压管DW3、二极管D1、电源电容C1、给定电容C2、驱动电容C3、变压电容C4、反馈电容C5、滤波电感L1、变压电感L2、限流电阻R1、稳压电阻R2、驱动电阻R3、栅极电阻R4、上输出电阻R5、下输出电阻R6、电流传感电阻Rs,电路供电电压端+Us端与限流电阻R1的一端、驱动电阻R3的一端、MOS管VT1的漏极端D端连接,限流电阻R1的另一端与辅助电源电压端+Vcc端、电源稳压管DW1的阴极、电源电容C1的一端、稳压电阻R2连接,电源稳压管DW1的阳极、电源电容C1的另一端均与输入地端GND1端连接,稳压电阻R2的另一端与给定电容C2的一端、给定稳压管DW2的阴极、参考电压端Vref端连接,给定电容C2的另一端、给定稳压管DW2的阳极均与输入地端GND1端连接,驱动电阻R3的另一端与PWM芯片IC1的供电输入端IN端、驱动稳压管DW3的阴极、驱动电容C3的一端连接,驱动稳压管DW3的阳极、驱动电容C3的另一端均与输入地端GND1端连接,PWM芯片IC1的使能端/ON端、地端GND端均与输入地端GND1端连接,PWM芯片IC1的输出端OUT端与栅极电阻R4的一端连接,栅极电阻R4的一端的另一端与MOS管VT1的栅极G端连接,PWM芯片IC1的反馈端FB端与电流运放IC3的输出端OUT端、电流负端电阻R13的一端连接,MOS管VT1的源极S端与变压电感L2的一端、变压电容C4的一端连接,变压电容C4的另一端与二极管D1的阴极、滤波电感L1的一端连接,二极管D1的阳极、电流传感电阻Rs的一端均与输入地端GND1端连接,变压电感L2的另一端输出地端GND2连接,滤波电感L1的另一端与上输出电阻R5的一端、超级电容SC1的正端+端、电路输出电压端+Uout端连接,上输出电阻R5的另一端与下输出电阻R6的一端、反馈电容C5的一端、电压反馈电阻R9的一端连接,超级电容SC1的负端-端、下输出电阻R6的另一端、反馈电容C5的另一端、电流传感电阻Rs的另一端均与输出地端GND2端连接。测控电路包括电压运放IC2、电流运放IC3、检测运放IC4、反馈电容C5、电压正端电容C6、电压负端电容C7、电流负端电容C8、电流正端电容C9、检测电容C10C10、电压输入电阻R7、电压正端电阻R8、电压反馈电阻R9、电压负端电阻R10、电流输入电阻R11、电流反馈电阻R12、电流负端电阻R13、电流正端电阻R14、负端检测电阻R15、放大电阻R16、正端检测电阻R17,电压输入电阻R7的一端与参考电压端Vref端连接,电压输入电阻R7的另一端与电压运放IC2的正输入端IN+端、电压正端电容C6的一端连接,电压正端电容C6的另一端与电压正端电阻R8的一端连接,电压正端电阻R8的另一端与输入地端GND1端连接,电压运放IC2的负输入端IN-端与电压负端电容C7一端、电压反馈电阻R9的另一端连接,电压负端电容C7另一端与电压负端电阻R10的一端连接,电压负端电阻R10的另一端与电压运放IC2的输出端OUT端、电流输入电阻R11的一端连接,电压运放IC2的正电源端+V端与辅助电源电压端+Vcc连接,电压运放IC2的地端GND端与输入地端GND1端连接,电流输入电阻R11的另一端与电流运放IC3的负输入端IN-端、电流负端电容C8的一端连接,电流负端电容C8的另一端与电流负端电阻R13的另一端连接,电流运放IC3的正输入端IN+端与电流反馈电阻R12的一端、电流正端电容C9的一端连接,电流正端电容C9的另一端与电流正端电阻R14的一端连接,电流正端电阻R14的另一端、电流运放IC3的地端GND端均与输入地端GND1端连接,电流反馈电阻R12的另一端与检测运放IC4的输出端OUT端、放大电阻R16的一端连接,放大电阻R16的另一端与负端检测电阻R15的一端、检测运放IC4的负输入端IN-端连接,负端检测电阻R15的另一端、检测电容C10C10的一端、检测运放IC4的地端GND端均与输入地端GND1端连接,检测运放IC4的正电源端+V端与辅助电源电压端+Vcc连接,检测运放IC4的正输入端IN+端与检测电容C10C10的另一端、正端检测电阻R17的一端连接,正端检测电阻R17的另一端与输出地端GND2端连接。本专利技术的有益效果如下:本专利技术以功率MOS管、PWM芯片、运算放大器等为主的简单电路方案,具有动态恒流充电、稳态稳压充电的控制功能,以确保超级电容在宽广的充电电源电压条件下进行安全、可靠、快速的充电与稳压控制,该电路方案电路简单、成本低、可靠性高、通用性好,易于模块化、产品系列化。附图说明图1为本专利技术的电路图。具体实施方式下面结合附图对本专利技术作进一步说明。如图1所示,一种基于稳压输出式的超级电容双闭环升降压充电控制电路,包括电源与升降压主电路、测控电路。电源与升降压主电路包括超级电容SC1、PWM芯片IC1、MOS管VT1、电源稳压管DW1、给定稳压管DW2、驱动稳压管DW3、二极管D1、电源电容C1、给定电容C2、驱动电容C3、变压电容C4、反馈电容C5、滤波电感L1、变压电感L2、限流电阻R1、稳压电阻R2、驱动电阻R3、栅极电阻R4、上输出电阻R5、下输出电阻R6、电流传感电阻Rs,电路供电电压端+Us端与限流电阻R1的一端、驱动电阻R3的一端、MOS管VT1的漏极端D端连接,限流电阻R1的另一端与辅助电源电压端+Vcc端、电源稳压管DW1的阴极、电源电容C1的一端、稳压电阻R2连接,电源稳压管DW1的阳极、电源电容C1的另一端均与输入地端G本文档来自技高网...

【技术保护点】
1.基于稳压输出式的超级电容双闭环升降压充电控制电路,包括电源与升降压主电路、测控电路,其特征在于:电源与升降压主电路包括超级电容SC1、PWM芯片IC1、MOS管VT1、电源稳压管DW1、给定稳压管DW2、驱动稳压管DW3、二极管D1、电源电容C1、给定电容C2、驱动电容C3、变压电容C4、反馈电容C5、滤波电感L1、变压电感L2、限流电阻R1、稳压电阻R2、驱动电阻R3、栅极电阻R4、上输出电阻R5、下输出电阻R6、电流传感电阻Rs,电路供电电压端+Us端与限流电阻R1的一端、驱动电阻R3的一端、MOS管VT1的漏极端D端连接,限流电阻R1的另一端与辅助电源电压端+Vcc端、电源稳压管DW1的阴极、电源电容C1的一端、稳压电阻R2连接,电源稳压管DW1的阳极、电源电容C1的另一端均与输入地端GND1端连接,稳压电阻R2的另一端与给定电容C2的一端、给定稳压管DW2的阴极、参考电压端Vref端连接,给定电容C2的另一端、给定稳压管DW2的阳极均与输入地端GND1端连接,驱动电阻R3的另一端与PWM芯片IC1的供电输入端IN端、驱动稳压管DW3的阴极、驱动电容C3的一端连接,驱动稳压管DW3的阳极、驱动电容C3的另一端均与输入地端GND1端连接,PWM芯片IC1的使能端/ON端、地端GND端均与输入地端GND1端连接,PWM芯片IC1的输出端OUT端与栅极电阻R4的一端连接,栅极电阻R4的一端的另一端与MOS管VT1的栅极G端连接,PWM芯片IC1的反馈端FB端与电流运放IC3的输出端OUT端、电流负端电阻R13的一端连接,MOS管VT1的源极S端与变压电感L2的一端、变压电容C4的一端连接,变压电容C4的另一端与二极管D1的阴极、滤波电感L1的一端连接,二极管D1的阳极、电流传感电阻Rs的一端均与输入地端GND1端连接,变压电感L2的另一端输出地端GND2连接,滤波电感L1的另一端与上输出电阻R5的一端、超级电容SC1的正端+端、电路输出电压端+Uout端连接,上输出电阻R5的另一端与下输出电阻R6的一端、反馈电容C5的一端、电压反馈电阻R9的一端连接,超级电容SC1的负端‑端、下输出电阻R6的另一端、反馈电容C5的另一端、电流传感电阻Rs的另一端均与输出地端GND2端连接;测控电路包括电压运放IC2、电流运放IC3、检测运放IC4、反馈电容C5、电压正端电容C6、电压负端电容C7、电流负端电容C8、电流正端电容C9、检测电容C9、电压输入电阻R7、电压正端电阻R8、电压反馈电阻R9、电压负端电阻R10、电流输入电阻R11、电流反馈电阻R12、电流负端电阻R13、电流正端电阻R14、负端检测电阻R15、放大电阻R16、正端检测电阻R17,电压输入电阻R7的一端与参考电压端Vref端连接,电压输入电阻R7的另一端与电压运放IC2的正输入端IN+端、电压正端电容C6的一端连接,电压正端电容C6的另一端与电压正端电阻R8的一端连接,电压正端电阻R8的另一端与输入地端GND1端连接,电压运放IC2的负输入端IN‑端与电压负端电容C7一端、电压反馈电阻R9的另一端连接,电压负端电容C7另一端与电压负端电阻R10的一端连接,电压负端电阻R10的另一端与电压运放IC2的输出端OUT端、电流输入电阻R11的一端连接,电压运放IC2的正电源端+V端与辅助电源电压端+Vcc连接,电压运放IC2的地端GND端与输入地端GND1端连接,电流输入电阻R11的另一端与电流运放IC3的负输入端IN‑端、电流负端电容C8的一端连接,电流负端电容C8的另一端与电流负端电阻R13的另一端连接,电流运放IC3的正输入端IN+端与电流反馈电阻R12的一端、电流正端电容C9的一端连接,电流正端电容C9的另一端与电流正端电阻R14的一端连接,电流正端电阻R14的另一端、电流运放IC3的地端GND端均与输入地端GND1端连接,电流反馈电阻R12的另一端与检测运放IC4的输出端OUT端、放大电阻R16的一端连接,放大电阻R16的另一端与负端检测电阻R15的一端、检测运放IC4的负输入端IN‑端连接,负端检测电阻R15的另一端、检测电容C9的一端、检测运放IC4的地端GND端均与输入地端GND1端连接,检测运放IC4的正电源端+V端与辅助电源电压端+Vcc连接,检测运放IC4的正输入端IN+端与检测电容C9的另一端、正端检测电阻R17的一端连接,正端检测电阻R17的另一端与输出地端GND2端连接。...

【技术特征摘要】
1.基于稳压输出式的超级电容双闭环升降压充电控制电路,包括电源与升降压主电路、测控电路,其特征在于:电源与升降压主电路包括超级电容SC1、PWM芯片IC1、MOS管VT1、电源稳压管DW1、给定稳压管DW2、驱动稳压管DW3、二极管D1、电源电容C1、给定电容C2、驱动电容C3、变压电容C4、反馈电容C5、滤波电感L1、变压电感L2、限流电阻R1、稳压电阻R2、驱动电阻R3、栅极电阻R4、上输出电阻R5、下输出电阻R6、电流传感电阻Rs,电路供电电压端+Us端与限流电阻R1的一端、驱动电阻R3的一端、MOS管VT1的漏极端D端连接,限流电阻R1的另一端与辅助电源电压端+Vcc端、电源稳压管DW1的阴极、电源电容C1的一端、稳压电阻R2连接,电源稳压管DW1的阳极、电源电容C1的另一端均与输入地端GND1端连接,稳压电阻R2的另一端与给定电容C2的一端、给定稳压管DW2的阴极、参考电压端Vref端连接,给定电容C2的另一端、给定稳压管DW2的阳极均与输入地端GND1端连接,驱动电阻R3的另一端与PWM芯片IC1的供电输入端IN端、驱动稳压管DW3的阴极、驱动电容C3的一端连接,驱动稳压管DW3的阳极、驱动电容C3的另一端均与输入地端GND1端连接,PWM芯片IC1的使能端/ON端、地端GND端均与输入地端GND1端连接,PWM芯片IC1的输出端OUT端与栅极电阻R4的一端连接,栅极电阻R4的一端的另一端与MOS管VT1的栅极G端连接,PWM芯片IC1的反馈端FB端与电流运放IC3的输出端OUT端、电流负端电阻R13的一端连接,MOS管VT1的源极S端与变压电感L2的一端、变压电容C4的一端连接,变压电容C4的另一端与二极管D1的阴极、滤波电感L1的一端连接,二极管D1的阳极、电流传感电阻Rs的一端均与输入地端GND1端连接,变压电感L2的另一端输出地端GND2连接,滤波电感L1的另一端与上输出电阻R5的一端、超级电容SC1的正端+端、电路输出电压端+Uout端连接,上输出电阻R5的另一端与下输出电阻R6的一端、反馈电容C5的一端、电压反馈电阻R9的一端连接,超级电容SC1的负端-端、下输出电阻R6的另一端、反馈电容C5的另一端、电流传感电阻Rs的另一端均与输出地端GND2端连接;测控电路包括电压运放IC2、电流运放IC3、检测运放IC4、反馈电容C5、电压正端电容C6、电压负端电容C7、电流负端电容C8、电流正端电容C9、检测电容C9、电压输入电阻R7、电压正端电阻R8、电压反馈电阻R9、电压负端电阻R10、电流输入电阻R11、电流反馈电阻R12、电流负端电阻R13、电流正端电阻R14、负端检测电阻R15、放大电阻R16、正端检测电阻R17,电压输入电阻R7的一端与参考电压端Vref端连接,电压输入电阻R7的另一端与电压运放IC2的正输入端I...

【专利技术属性】
技术研发人员:陈雪亭陈德传
申请(专利权)人:杭州电子科技大学
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1