本发明专利技术涉及一种锂离子二次电池多孔硅/石墨/碳复合负极材料的制备方法。该复合材料硅源是天然矿土:高岭石、蒙脱石、云母粉、硅灰石、蛭石粉、浮石粉、煤矸石。利用金属单质或合金粉末和无水金属氯化物在温和条件下将其还原成单质硅,将还原的多孔硅、石墨和有机碳源进行高能球磨混合即可。还原温度低,天然矿土固有的孔道结构得到有效保留,制备的硅材料具有较高的比表面积和丰富的孔道,表现出优异的电化学性能。天然矿土的固有的孔道特性,能有效缓解体积膨胀,制备的复合材料表现出更高的充放电容量和稳定性。特别是高岭土来源广泛,价格便宜,大大降低了电池材料制备成本。本发明专利技术对环境友好,制备方法和仪器设备简单易行,适合工业化生产。
【技术实现步骤摘要】
锂离子二次电池多孔硅/石墨/碳复合负极材料的制备方法
本专利技术涉及一种锂离子二次电池多孔硅/石墨/碳复合负极材料的制备方法。
技术介绍
锂离子电池具有高的能量密度,较长的循环使用寿命和低的自放电率,广泛应用于智能手机、便携式计算机、电动汽车等,已经成为科学研究的热点。随着人类社会的发展,人们对于商品化的锂离子电池有着更高的要求,需要更高的能量密度、比容量和使用寿命,同时需要材料来源广泛,价格便宜,并且安全、可靠。目前,商品化的锂离子二次电池所用的负极材料主要为石墨类碳材料。然而,石墨理论容量低(372mAh/g),且在快速嵌锂过程中容易发生析锂现象,安全性较差,很难满足人们对高能电源的需求。硅基材料是目前研究的热点,被认为是一种非常有前景的碳类负极材料替代品。纯硅的理论容量可达4200mAh/g,远远高于石墨的理论容量,是一种非常理想的负极材料。但是,单质硅在充放电过程中体积膨胀严重(>300%),造成电极材料破碎粉化,循环性能降低。并且,单质硅价格昂贵,制备成本较高,很难满足商业化应用的需求。因此,寻找廉价的硅源,并解决硅的循环稳定性问题是目前硅基电池商业化过程面临的巨大挑战。一般而言,硅基负极的膨胀问题可以通过制备多孔结构材料、包覆碳材料、掺杂等方法来解决。研究表明,将单质硅和碳材料进行复合不仅可以获得较高的容量,同时还能缓解硅的体积膨胀,改善电池的循环寿命。但是寻找合适的硅源却较为困难。目前,只有少量文献报道可以从廉价的天然产物获得单质硅,包括稻壳、硅藻土、沙子等。Ju等(ElectrochimicaActa,2016,191,411-416)利用稻壳制备多孔硅,并进一步制备了SiOx/C电极材料用于锂离子电池,表现出较高的循环稳定性。但是稻壳本身硅含量较少,所制备电池容量较低,而且采用镁热还原的方法能耗较高,不利于工业化生产。Campbell等(ScientificReports,2016,6,33050)利用镁热还原的方法将硅藻土还原成单质硅,并利用化学气相沉积的方法将碳沉积到单质硅表面制备了Si@C复合材料并用于锂离子电池负极,该材料具有较好的循环稳定性和较高的放电容量。然而,化学气相沉积过程复杂,不利于工业化生产。Qian等(EnergyEnvironSci,2015,8,3187-3191)利用铝热还原高硅沸石制备单质硅作为锂离子电池负极材料,具有较高的比容量和良好的循环稳定性。但高硅沸石中SiO2含量相对较少,制备出的单质硅产率较低,且需要用HF处理,污染环境,不利于大规模生产。Park等(NanoEnergy,2015,12,161-168)利用铝热还原硅藻土制备多孔硅用于锂离子电池负极,具有较高的比容量和良好的循环性能,但还原温度高(900℃),能耗高;且需要用磷酸处理,并用镁进行二次还原,工艺复杂,不利于工业化生产。因此,寻找硅含量高的原料,并采用低能耗的还原方法将有利于硅基电池的工业化生产。天然(非金属)矿物,包括高岭土(kaolin)、蒙脱石(montmorillonite)、云母粉(Mica)、硅灰石(wollastonite)、蛭石(Vermiculite)、煤矸石(coalgangue)以及浮石(fúshí)等都是硅含量较高的硅酸盐黏土矿物,在我国广泛应用于石油、化工、建材、造纸、医药、催化等行业。中国专利CN103730631B公开了一种天然石墨和加热处理过的凹凸棒土制备的电池材料,由于天然凹凸棒土中的硅为氧化物,容量极低,不能满足实际应用需求。CN105098183A公开了一种以稻壳为原料制备锂离子电池负极材料,其特征在于以天然稻壳为原料,与Na2CO3在氮气气氛下于850-1000℃,煅烧得到含硅的微孔碳负极材料。虽然该材料稳定性较好,但是容量较低,约为400mAhg-1,不能满足实际应用。CN104310404A公开一种以矿物为原料水热合成硅纳米粉的方法,但是制备过程中加入水,会与碱金属发生反应,安全性低,对设备要求高,不利于工业化应用。CN102208636A公开了一种以硅藻土为原料制备多孔硅/碳复合材料,它是以硅藻土为原料,利用金属热还原方法制备多孔硅,然后与含碳前驱体进行热处理,得到硅/碳复合材料。虽然该材料性能较高,但是镁热还原温度高,成本高,不利于工业化生产。另外,高岭土的主要成分是Al203·2Si02·2H20,是含铝的硅酸盐,为自然界中普遍存在的一种非金属矿。而硅藻土主要是由无定形的SiO2组成,并含有少量Fe2O3、CaO、MgO、Al2O3,两者有着本质的区别。
技术实现思路
本专利技术目的是提供一种锂离子二次电池多孔硅/石墨/碳复合负极材料的制备方法。以天然非金属矿物:高岭土、蒙脱石、云母粉、硅灰石、蛭石粉、浮石粉、煤矸石为硅源,以I、II、III主族的金属粉末或合金粉末和相应的金属氯化物为还原剂,在温和条件下(100-400℃)下将硅源还原成单质硅。将所制备的单质硅与石墨、有机碳源以不同比例高能球磨混合。最后,在惰性气氛中高温焙烧,得到多孔硅/石墨/碳复合材料。本专利技术用于锂离子电池负极具有循环寿命高,容量大的特点。而且,该硅基材料价格便宜,制备简单,具有很高的工业化生产价值。本专利技术提供的一种锂离子二次电池多孔硅/石墨/碳复合负极材料的制备方法是经过以下步骤:1)将天然非金属矿物硅源用酸进行处理,再用水和乙醇将样品洗至中性,过滤,烘干,然后将干燥处理的硅源在马弗炉中进行高温焙烧,焙烧温度为400-800℃,时间为1-12h,得到纯化后的硅源;矿物硅源为高岭土、蒙脱石、云母粉、硅灰石、蛭石粉、浮石粉、煤矸石。2)将步骤1)中的硅源样品与铝粉、镁粉、锂粉、铝锂合金粉、铝镁合金粉或铝钠合金粉以及无水金属氯化物进行混合,在惰性气体保护下进行高能球磨;3)将步骤2)中得到的样品在惰性气氛下,进行100-400℃低温还原,自然冷却至室温;4)将步骤3)中的样品在酸溶液中浸泡搅拌,洗涤、过滤,烘干,得到还原后的多孔硅纳米颗粒;5)将步骤4)中的样品和石墨、有机碳源在惰性气氛下高能球磨,6)球磨后的样品置于管式炉中,惰性气氛下进行高温焙烧,焙烧温度为400-900℃,优选温度为800℃,升温速率5-15℃/min,时间为1-12h;冷却至室温得到最终样品。研磨过筛得到颗粒大小为200nm-2μm,比表面积为50-400m2/g的材料。步骤1)、4)中所述的酸为盐酸、磷酸、硫酸中的一种,酸浓度为1-6mol/L,固液质量比为1:5-1:20、1:50-1:200,处理温度为20-100℃,处理时间为1-12h;步骤2)中的无水金属氯化物为AlCl3、MgCl2、LiCl等无机盐。硅源、金属粉末或合金粉末、无水金属氯化物的质量比为5:3:10-1:2:16,惰性气体为氮气或氩气。步骤3)的惰性气氛为氮气或氩气,升温速率为5-15℃/min,保温时间1-24h。步骤5)中的多孔硅、石墨、无定形碳的质量比为3:4:3-1:6:3,其中无定形碳来源于有机化合物,包括沥青、聚丙烯腈、聚氯乙烯、麦芽糖、多巴胺、纤维素、共价有机骨架聚合物材料等。步骤2)、5)中的球磨转速为100-500rpm,球磨时间为3-24h,球料比(质量比)为5:1-20:1。本文档来自技高网...
【技术保护点】
1.一种锂离子二次电池多孔硅/石墨/碳复合负极材料的制备方法,其特征在于它是经过以下步骤:1)将天然矿物硅源用酸进行处理,再用水和乙醇将样品洗至中性,过滤,烘干,然后在马弗炉中进行高温焙烧,焙烧温度为400‑800℃,时间为1‑12h,得到纯化后的硅源;矿物硅源为高岭土、蒙脱石、云母粉、硅灰石、蛭石粉、浮石粉、煤矸石;2)将步骤1)中的硅源样品与铝粉、镁粉、锂粉、铝锂合金粉、铝镁合金粉、铝钠合金粉以及无水金属氯化物进行混合,在惰性气体保护下进行高能球磨;3)将步骤2)中得到的样品在惰性气氛下,进行100‑400℃低温还原,自然冷却至室温;4)将步骤3)中的样品在酸溶液中浸泡搅拌,洗涤、过滤,烘干,得到还原后的多孔硅纳米颗粒;5)将步骤4)中的样品和石墨、有机碳源在惰性气氛下高能球磨;6)球磨后的样品置于管式炉中,惰性气氛下进行高温焙烧,焙烧温度为400‑900℃,优选温度为800℃,升温速率5‑15℃/min,时间为1‑12h;冷却至室温得到最终样品。
【技术特征摘要】
1.一种锂离子二次电池多孔硅/石墨/碳复合负极材料的制备方法,其特征在于它是经过以下步骤:1)将天然矿物硅源用酸进行处理,再用水和乙醇将样品洗至中性,过滤,烘干,然后在马弗炉中进行高温焙烧,焙烧温度为400-800℃,时间为1-12h,得到纯化后的硅源;矿物硅源为高岭土、蒙脱石、云母粉、硅灰石、蛭石粉、浮石粉、煤矸石;2)将步骤1)中的硅源样品与铝粉、镁粉、锂粉、铝锂合金粉、铝镁合金粉、铝钠合金粉以及无水金属氯化物进行混合,在惰性气体保护下进行高能球磨;3)将步骤2)中得到的样品在惰性气氛下,进行100-400℃低温还原,自然冷却至室温;4)将步骤3)中的样品在酸溶液中浸泡搅拌,洗涤、过滤,烘干,得到还原后的多孔硅纳米颗粒;5)将步骤4)中的样品和石墨、有机碳源在惰性气氛下高能球磨;6)球磨后的样品置于管式炉中,惰性气氛下进行高温焙烧,焙烧温度为400-900℃,优选温度为800℃,升温速率5-15℃/min,时间为1-12h;冷却至室温得到最终样品。2.根据权利要求1所述的制备方法,其特征在于步骤1)、4)中所述的酸为盐酸、磷酸、硫酸中的一种,酸浓度为1-6mol/L,固液质量比为1:5-1:20、1:50-1:200,处理温度为20-100℃,处理时间为1-12h。3.根据权利要求1所述的制备方法,其特征在于步骤2)中的无水金属氯化物为AlCl3、MgCl2、LiCl。4.根据权利要求1所述的制备方法,其特征在于步骤2)所述的硅源、金属粉末或合金粉末、无水金属氯化物的质量比为5:3:10-1:2:16,惰性气体为氮气或氩气。5.根据权利要求1所述的制备方法,其特征在于步骤3)的惰性气氛为氮气或氩气,升温速率为5-15℃/min,保温时间1-24h。6.根据权利要求1所述的制备方法,其特征在于步骤5)中的多孔硅、石墨、无定形碳的质量比为3:4:3-1:6:3,其中无定形碳来源于有机化合物,包括沥青、聚丙烯腈、聚氯乙烯、麦芽糖、多巴胺、纤维素、共价有机骨架聚合物材料。7.根据权利要求1所...
【专利技术属性】
技术研发人员:杨化滨,杨丹丹,
申请(专利权)人:南开大学,
类型:发明
国别省市:天津,12
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。