一种基于气体分压动态平衡原理的深海气体检测装置制造方法及图纸

技术编号:17652492 阅读:31 留言:0更新日期:2018-04-08 06:49
本发明专利技术公开了一种基于气体分压动态平衡原理的深海气体检测装置,包括安装在装置前段的上端盖,在上端盖下端安装了高分子透气膜,在高分子透气膜后安装了烧结块,烧结块安装在水气分离基座上,上端盖通过螺钉与水气分离基座连接;水气分离基座通过螺钉安装在腔体端盖上,腔体端盖通过螺钉安装在腔体上;在腔体内安装有电子控制仓和激光检测腔体;水气分离基座端部有卡套连接件,卡套连接件通过软管与激光检测腔体的出入口相连接,形成封闭的内部气路。本方案采用基于膜结构的气‑液动平衡方法可对深海原位甲烷溶解气进行长期检测,且通过激光检测具有较低的检测下限,同时电子电路部分位于高强度腔体内,可承受深海海底的高压。

【技术实现步骤摘要】
一种基于气体分压动态平衡原理的深海气体检测装置
本专利技术涉及深海气体检测
,特别涉及一种基于气体分压动态平衡原理的深海气体检测装置。
技术介绍
为了进一步了解海水中溶解甲烷对生态环境、深海海洋地质沉积规律和海洋微生物的生存机制的影响,同时为天然气水合物的监测提供设备,迫切需求可以用于深海原位的甲烷气体检测设备。而目前的相关产品主要包含基于膜脱气和半导体敏感器件的甲烷气检测设备、基于红外吸收检测原理的甲烷检测设备和基于光学传感技术的甲烷气体检测设备。基于膜脱气和半导体敏感器件的甲烷气检测设备、基于红外吸收检测原理的甲烷检测设备虽然可以检测到甲烷气体,但其灵敏度和精度较低。虽然目前的基于光学传感技术的甲烷气体检测设备可以达到较低的甲烷气体检测线,但由于采用的气体分离储存技术,无法实现深海原位甲烷溶解气的长期检测。鉴于以上情况,结合最新的研究成果,研发了一种基于气体分压动态平衡原理的深海气体检测装置。
技术实现思路
针对现有技术的不足,本专利技术提出一种基于气体分压动态平衡原理的深海气体检测装置,可以实现深海原位甲烷溶解气的长期检测,且具有较低的检测下限。为实现上述目的,本专利技术提供如下技术方案:一种基于气体分压动态平衡原理的深海气体检测装置,包括:水气分离机构和检测机构;所述水气分离机构包括高分子透气膜,所述高分子透气膜的外侧能够与所述深海气体检测装置的外界接触,所述高分子透气膜的内侧通过管路连接于所述检测机构。优选的,所述水气分离机构还包括设置在所述高分子透气膜内侧的支撑件。优选的,所述支撑件具有透气结构,支撑所述高分子透气膜的整个内侧面。优选的,所述支撑件为烧结块。优选的,还包括保护壳体,所述检测机构安装在所述保护壳体内。优选的,所述保护壳体包括圆筒形的保护腔体和安装在其端部的腔体端盖;所述水气分离机构还包括上端盖和水气分离基座,所述高分子透气膜安装在所述上端盖的下端,所述上端盖安装于所述水气分离基座,所述水气分离基座安装于所述腔体端盖。优选的,所述检测机构包括激光检测腔体,所述激光检测腔体的出入口均连通于所述高分子透气膜内侧的管路。优选的,所述检测机构还包括电子控制仓,所述电子控制仓能够对所述激光检测腔体内的泵进行控制,和采集、计算与存储所述激光检测腔体的检测数据。从上述的技术方案可以看出,本专利技术提供的基于气体分压动态平衡原理的深海气体检测装置,采用基于膜结构的气-液动平衡方法可对深海原位甲烷溶解气进行长期检测,且通过激光检测具有较低的检测下限,同时电子电路部分位于高强度腔体内,可承受深海海底的高压。附图说明为了更清楚地说明本专利技术实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本专利技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图1为本专利技术实施例提供的基于气体分压动态平衡原理的深海气体检测装置的结构原理示意图。其中,1上端盖,2为高分子透气膜,3为烧结块,4为水气分离基座,5和6均为为螺钉,7为腔体端盖,8为卡套连接件,9为保护腔体,10为电子控制仓,11为激光检测腔体。具体实施方式下面将结合本专利技术实施例中的附图,对本专利技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本专利技术一部分实施例,而不是全部的实施例。基于本专利技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本专利技术保护的范围。本专利技术实施例提供的基于气体分压动态平衡原理的深海气体检测装置,其核心改进点在于,包括:水气分离机构和检测机构;其中,水气分离机构包括高分子透气膜2,该高分子透气膜2的外侧能够与深海气体检测装置的外界环境保持接触,高分子透气膜2的内侧通过管路连接于检测机构,其结构可以参照图1所示。当装置放于水中后,当海水进入后,由于高分子透气膜2两侧的气体分压不同,在气体分压的驱动下,海水中高浓度的甲烷溶解气透过高分子透气膜2进入内部的检测气路,使高分子透气膜2内外两侧气液动态平衡。从上述的技术方案可以看出,本专利技术实施例提供的基于气体分压动态平衡原理的深海气体检测装置,采用基于膜结构的气-液动平衡方法可对深海原位气体(如甲烷溶解气)进行长期检测。进一步的,水气分离机构还包括设置在高分子透气膜2内侧的支撑件,以保护高分子透气膜2避免其因外侧来自深海的压力而破损。在本实施例中,支撑件具有透气结构,且支撑高分子透气膜2的整个内侧面。如此设计,在提供全面支撑的同时,不会妨碍气体透过膜而影响检测。作为优选,支撑件为烧结块3,能够起到有效的支撑作用,同时透气效果良好,其结构可以参照图1所示。具体的,烧结块3可以是多孔金属结构。本专利技术实施例提供的基于气体分压动态平衡原理的深海气体检测装置,还包括保护壳体,检测机构安装在该保护壳体内,可承受深海海底的高压。当然,该深海气体检测装置还可以同其他设备配合使用,共用保护壳体。具体的,保护壳体包括圆筒形的保护腔体9和安装在其端部的腔体端盖7,其结构可以参照图1所示;水气分离机构还包括上端盖1和水气分离基座4,高分子透气膜2安装在上端盖1的下端,上端盖1安装于水气分离基座4,水气分离基座4安装于腔体端盖7;水气分离基座4内设有气体通道。作为优选,检测机构包括激光检测腔体11,该激光检测腔体11的出入口均连通于高分子透气膜2内侧的管路。本方案采用激光检测的方式,与现有技术(如红外检测)相比,具有较低的检测下限。在本实施例中,检测机构还包括电子控制仓10,该电子控制仓10能够对激光检测腔体11内的泵进行控制,和采集、计算与存储激光检测腔体11的检测数据。具体的,电子控制仓10可以使激光检测腔体11的泵一直运行循环,以保持内部待测气体与外界海水的时时动态平衡,并在需要的时候(比如每隔一段时间)进行检测并分析数据信号。下面结合具体实施例对本方案做进一步介绍:一种基于气体分压动态平衡原理的深海气体检测装置,包括安装在装置前段的上端盖1,在上端盖1下端安装了高分子透气膜2,在高分子透气膜2后安装了烧结块3,烧结块3安装在水气分离基座4上,上端盖1通过螺钉5与水气分离基座4连接。水气分离基座4通过螺钉6安装在腔体端盖7上,腔体端盖7通过螺钉安装在腔体9上。在腔体9内安装有电子控制仓10和激光检测腔体11。水气分离基座4端部有卡套连接件8,卡套连接件8通过软管与激光检测腔体11的出入口相连接,形成封闭的内部气路。采用软管连接便于布设。电子控制仓10通过对激光检测腔体11内的泵进行控制,可以对激光检测腔体11产生的信号进行分析,得到深海溶解气甲烷浓度值。工作原理为:当装置放置于水中后,海水通过上端盖1的入口进入上端盖1和水气分离基座4的空腔内,并在洋流的左右下持续的流入、流出。当海水进入后,由于高分子透气膜2两侧的气体分压不尽相同,在气体分压的驱动下,海水中高浓度的甲烷溶解气透过高分子透气膜2和烧结块3,通过卡套连接件8进入内部的检测气路。电子控制仓10通过对激光检测腔体11内的泵进行控制,在泵的循环压力下气体进入激光检测单元11进行检测,并将数据传递给电子控制仓10,完成数据的采集、计算与存储。本专利技术与现有技术相比具有以下优点:1.本发本文档来自技高网...
一种基于气体分压动态平衡原理的深海气体检测装置

【技术保护点】
一种基于气体分压动态平衡原理的深海气体检测装置,其特征在于,包括:水气分离机构和检测机构;所述水气分离机构包括高分子透气膜(2),所述高分子透气膜(2)的外侧能够与所述深海气体检测装置的外界接触,所述高分子透气膜(2)的内侧通过管路连接于所述检测机构。

【技术特征摘要】
1.一种基于气体分压动态平衡原理的深海气体检测装置,其特征在于,包括:水气分离机构和检测机构;所述水气分离机构包括高分子透气膜(2),所述高分子透气膜(2)的外侧能够与所述深海气体检测装置的外界接触,所述高分子透气膜(2)的内侧通过管路连接于所述检测机构。2.根据权利要求1所述的深海气体检测装置,其特征在于,所述水气分离机构还包括设置在所述高分子透气膜(2)内侧的支撑件。3.根据权利要求2所述的深海气体检测装置,其特征在于,所述支撑件具有透气结构,支撑所述高分子透气膜(2)的整个内侧面。4.根据权利要求2所述的深海气体检测装置,其特征在于,所述支撑件为烧结块(3)。5.根据权利要求1所述的深海气体检测装置,其特征在于,还包括保护壳体,所述检测机构安装在所述保护壳体内。6.根据权利要...

【专利技术属性】
技术研发人员:薛帅杜梦然张健彭晓彤
申请(专利权)人:中国科学院深海科学与工程研究所
类型:发明
国别省市:海南,46

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1