The invention discloses a Sr, Gd, Zn, Al Co doped Li7La3Zr2O12 cubic garnet structure solid electrolyte material and its synthesis method, the doped stoichiometric type solid electrolyte material for Li7+x+2m+nLa3 x ySrxGdyZr2 m nZnmAlnO12, of which: 0.2 = x = 0.4, y = 0.1 ~ 0.2. 0.1 = M = 0.2, n = 0.2 ~ 0.3; the following open: the synthesis method of lithium source compound and ammonia dissolved in water in oil (w/o) reverse microemulsion, the lanthanum and gadolinium source source, source of zinc, strontium, zirconium, aluminum source source source compound metal salt mixed solution join in reverse microemulsion of stirring, the resulting nanoparticles microemulsion hydrothermal treatment in a closed reactor, the precursor product is obtained after drying, after pre sintering, molding, after calcination synthesis of the solid electrolyte materials. The solid-state electrolyte prepared by this method has excellent ionic conductivity at room temperature, and has a great prospect in the field of all solid state lithium ion batteries.
【技术实现步骤摘要】
一种锶、钆、锌、铝共掺杂的立方相石榴石型固态电解质材料及其合成方法
本专利技术涉及锂离子电池电解质材料领域,具体涉及一种锶、钆、锌、铝共掺杂的立方相石榴石型固态电解质材料及其合成方法。
技术介绍
当前,锂离子电池正凭借其高能量密度和高功率密度等性能优势在消费类电子产品、电动汽车等领域占据的市场越来越大,而科技的飞速发展对锂离子电池的安全性提出了更加苛刻的使用要求。目前市场上的锂离子电池大多采用的是液态电解质,该类电解质溶液易挥发泄露,不利于电池的封装生产;电压窗口低,在高电压下易分解,造成电池的循环性能快速衰减;其易燃易爆、剧毒特性更是对电池的安全性和环保要求十分不利。鉴于此,全固态锂离子电池因其优良的综合性能备受关注。全固态锂离子电池以快离子导体材料作为固态电解质,具有优良的热稳定性、电化学稳定性及机械加工性特征,可在水汽、高热、高电压的严苛环境中服役,安全性高;固态电解质还能同时充当电池隔膜的角色,可优化锂离子电池的内部结构,简化电池封装工艺。然而,与液态电解质相比,固态电解质材料的锂离子电导率普遍较低(<10-3S/cm),一定程度上阻碍了其在电池领域的实际 ...
【技术保护点】
一种锶、钆、锌、铝共掺杂的立方相石榴石型固态电解质材料,所述固态电解质材料的基体相为Li7La3Zr2O12,其特征在于,采用Sr、Gd元素取代Li7La3Zr2O12中的部分La元素,采用Zn、Al取代Li7La3Zr2O12中的部分Zr元素,掺杂后固态电解质材料的化学计量式为Li7+x+2m+nLa3‑x‑ySrxGdyZr2‑m‑nZnmAlnO12,其中0.2≤x≤0.4,0.1≤y≤0.2,0.1≤m≤0.2,0.2≤n≤0.3。
【技术特征摘要】
1.一种锶、钆、锌、铝共掺杂的立方相石榴石型固态电解质材料,所述固态电解质材料的基体相为Li7La3Zr2O12,其特征在于,采用Sr、Gd元素取代Li7La3Zr2O12中的部分La元素,采用Zn、Al取代Li7La3Zr2O12中的部分Zr元素,掺杂后固态电解质材料的化学计量式为Li7+x+2m+nLa3-x-ySrxGdyZr2-m-nZnmAlnO12,其中0.2≤x≤0.4,0.1≤y≤0.2,0.1≤m≤0.2,0.2≤n≤0.3。2.一种权利要求1所述的固态电解质材料的合成方法,其特征在于,所述合成方法为反相微乳液-水热法,具体包括以下步骤:(1)金属盐混合溶液的配置:按照固态电解质材料Li7+x+2m+nLa3-x-ySrxGdyZr2-m-nZnmAlnO12中元素的化学计量比将La源、Sr源、Gd源、Zr源、Zn源、Al源的化合物溶解于去离子水中,得到浓度为0.1~1mol/L的金属盐混合溶液;(2)微乳液的配置:将表面活性剂、助表面活性剂、油相、去离子水按1:(4~5):(6~7):(3~4)的质量比例混合均匀得到微乳液,再将步骤(1)中相应化学计量比的Li源化合物和浓氨水溶解于微乳液中,其中,Li源化合物与浓氨水的质量比为1:(5~10),得到油包水型反相微乳液;(3)制备纳米粒子微乳液:将金属盐混合溶液以1~2mL/min的速率滴入反相微乳液中,同时以600~900rpm的转速搅拌1~3h,得到纳米粒子微乳液;(4)制备前驱体:将纳米粒子微乳液倒入密闭反应釜中,经120~140℃水热处理12~2...
【专利技术属性】
技术研发人员:卢超,杨仕清,史卫梅,杨兴江,梁桃华,孟奕峰,
申请(专利权)人:成都职业技术学院,
类型:发明
国别省市:四川,51
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。