磁耦合共振高效电能传输线圈设计方法技术

技术编号:16877817 阅读:28 留言:0更新日期:2017-12-23 14:44
本发明专利技术公开了一种磁耦合共振高效电能传输线圈设计方法,属于无线电能传输设备技术领域。本发明专利技术的技术方案要点为:根据充电目标确定接收端单向线圈大小,根据电源确定发射端正向线圈和方向线圈大小;根据互感公式确定发射端正向线圈和反向线圈之间的匝数比,对发射端反向线圈的匝数进行调整,根据发射端正反向串联线圈和接收端单向线圈之间互感随传输距离变化曲线的平坦程度选取合适的匝数;然后利用两个可调电容C1、C2将发射端正反向串联线圈和接收端单向线圈调谐在所用工作频率。本发明专利技术近距离时正反向串联线圈作为WPT/MRC系统的发射线圈能有效抑制频率分裂现象的产生;远距离时正向线圈作为WPT/MRC系统的发射线圈,保持系统的高效率传输。

Design method of magnetic coupling resonant high efficiency electric energy transmission coil

The invention discloses a design method of magnetic coupling resonance high efficiency electric energy transmission coil, which belongs to the technical field of radio energy transmission equipment. Key points of the technical scheme of the invention is: according to the charging target receiver coil one-way size, according to the power to determine the transmitter coil and the positive direction of coil size; according to the formula to determine the transformer turns between the transmitter coil and coil positive reverse ratio to adjust the number of turns of the transmitter loop reverse line, according to the correct emission of reverse series the receiver coil and transformer coil with one-way transmission distance between flat degree of curve selection turns right; then by using two adjustable capacitor C1, C2 will launch the correct reverse series coil and receiving coil used in unidirectional tuning frequency. The short distance positive and negative tandem coil as the transmitting coil of the WPT/MRC system can effectively inhibit the generation of frequency splitting phenomenon, and the forward coil is used as the transmitting coil of the WPT/MRC system at a long distance, so as to maintain the efficient transmission of the system.

【技术实现步骤摘要】
磁耦合共振高效电能传输线圈设计方法
本专利技术属于无线电能传输设备
,具体涉及一种磁耦合共振高效电能传输线圈设计方法。
技术介绍
无线电能传输方式作为一种更为灵活方便安全的能量传输方式,受到国内外的广泛关注。迄今为止,根据能量传输原理和距离的不同,无线电能传输方式可以分为三类:第一类是电磁感应式,主要用于移动设备的无线供电,是一种安全、可靠、灵活的电能传输技术,然而其传输距离非常近,约为几厘米;第二类是微波式,通过天线发射和接收电磁能量,具有传输距离远和传输功率大的优点,但是在能量传输的过程中,需要比较复杂的天线对准技术,且微波能量损耗大,效率低,对人体具有严重危害,一般应用于特殊场合;第三类是磁耦合谐振式无线电能传输(wirelesspowertransferviamagneticresonantcoupling,WPT/MRC),线圈之间通过耦合谐振方式能够高效交换能量。与感应式无线电能传输方式相比,磁耦合谐振式无线电能传输距离更远;与微波无线能量传输方式相比,磁耦合谐振式无线电能传输没有辐射。频率分裂是磁耦合谐振式无线电能传输中普遍存在的现象。在磁耦合谐振式无线电能传输中,当发射线圈和接收线圈之间的距离小于某个临界值时,两线圈处于过耦合状态,线圈间的互感发生剧烈变化,系统电能传输效率也会急剧下降。此时,在谐振频率处线圈接收的电能不再是最大值,而是在谐振频率点两端的某两个频率点处达到峰值,这种现象叫做频率分裂。为了抑制频率分裂,可以采用频率跟踪、阻抗匹配、改变线圈结构等方法。频率跟踪技术是通过在WPT/MRC系统中附加高频电流检测器、差分放大器、相位补偿器、锁相环等一系列复杂的电路来实现对发射回路谐振频率的跟踪控制,进而抑制频率分裂。但是,这些附加的电路会使系统变得复杂,也会消耗额外的能量。阻抗匹配方法是在WPT/MRC系统中使用可调阻抗匹配网络来抑制频率分裂,但是需要逆变电路、反馈电路、控制电路等根据传输的距离来调整匹配阻抗。此外,还可以通过改变线圈结构的方式抑制频率分裂,这种方法无需在系统中添加额外复杂电路,便于操作,简单易行。
技术实现思路
本专利技术为实现在系统中不附加额外复杂电路、消耗多余能量的同时,能够在近距离内有效抑制WPT/MRC中出现的频率分裂,提高系统传输效率进而实现在远距离时保持高效传输,提供了一种磁耦合共振高效电能传输线圈设计方法。本专利技术为解决上述技术问题采用如下技术方案,磁耦合共振高效电能传输线圈设计方法,其特征在于装置包括信号发生器、功率放大器、由内外同轴设置的反相线圈和正向线圈组成的发射端正反向串联线圈、接收端单向线圈、开关g、可调电容C1、可调电容C2和负载,其中发射端正反向串联线圈与接收端单向线圈之间预留间隔后相对同轴设置,所述信号发生器的信号输出端与功率放大器的信号输入端连接,功率放大器的正向输出端与可调电容C1的一端连接,可调电容C1的另一端与正向线圈的一端连接,正向线圈的另一端与反向线圈的一端连接,反向线圈的另一端与功率放大器的负向输出端连接,反向线圈与开关g并联连接,所述单向线圈的一端与负载的正向输入端连接,单向线圈的另一端与可调电容C2的一端连接,可调电容C2的另一端与负载的负向输入端连接;具体设计过程为:根据实际应用中充电目标的尺寸确定接收端单向线圈的大小即接收端单向线圈的半径和匝数;由激励源确定发射端正向线圈和反向线圈的半径;根据互感公式确定发射端正向线圈和反向线圈之间的匝数比,其中设定接收端单向线圈的半径为rR,匝数为nR,设定发射端正反向串联线圈的正向线圈的半径为rTf,反向线圈的半径为rTr,通过两单匝圆线圈之间的互感公式:求出发射端正反向串联线圈和接收端单向线圈之间的互感:式中,μ0为真空磁导率,r1和r2分别是两单匝圆线圈的半径,d为两单匝圆线圈间的距离,K(k)和E(k)分别是第一类和第二类椭圆积分;nTf和nTr分别是正向线圈和反向线圈的匝数,nR是接收端单向线圈匝数,rTf和rTr分别是正向线圈和反向线圈的半径,rR是接收端单向线圈半径,Dij是正向线圈或反向线圈的第i匝和接收端单向线圈的第j匝之间的距离,D为正向线圈或反向线圈与接收端单向线圈中心点之间的距离,a为导线半径,p为节距,密绕线圈节距p为0,可忽略不计;通过求M(D)关于D的微分得出公式:求出当正向线圈单独作为发射线圈时频率分裂点位置Ds,将D=D1=Ds/2带入上式,可以求出反向线圈的匝数;对反向线圈的匝数进行变动,根据公式确定发射端正反向串联线圈和接收端单向线圈之间互感曲线随距离变化的平坦程度,v越小则表示互感变化曲线越平坦,其中选取发射端正反向串联线圈和接收端单向线圈之间的互感随传输距离变化曲线最平坦所对应的发射端反向线圈的匝数作为最优设计匝数,式中,D0为发射端正反向串联线圈和接收端单向线圈之间的初始距离,D1为发射端正反向串联线圈和接收端单向线圈之间互感取最大值时两线圈间的距离;求出正向线圈作为发射线圈的WPT/MRC系统传输效率达到最高时,发射端正反向串联线圈和接收端单向线圈之间的距离为:其中a为导线半径,μ0为真空磁导率,ω为角频率,σ为磁导率,rTf为正向线圈的半径,rR为接收端单向线圈半径;当传输距离小于Dm时,正反向串联线圈作为发射线圈的WPT/MRC系统的传输效率高于正向线圈作为发射线圈的WPT/MRC系统传输效率,故使用正反向串联线圈作为WPT/MRC系统的发射线圈,用来抑制频率分裂,实现系统的高效率传输;当传输距离大于Dm时,正反向串联线圈作为发射线圈的WPT/MRC系统的传输效率低于正向线圈作为发射线圈的WPT/MRC系统传输效率,故闭合开关g将反向线圈进行短路,使用正向线圈作为WPT/MRC系统的发射线圈,保持系统高效率传输;然后利用可调电容C1和可调电容C2将发射端正反向串联线圈和接收端单向线圈调谐在所用工作频率即完成用于无线电能传输的磁耦合共振高效电能传输线圈的发射端正反向串联线圈的设计。进一步优选,所述发射端正向线圈和反向线圈及接收端单向线圈均为螺旋圆形线圈、螺旋矩形线圈或螺旋椭圆形线圈。进一步优选,所述接收端单向线圈半径rR和匝数nR的设定标准根据实际充电目标确定;发射端正向线圈半径rTf和反向线圈半径rTr的设定标准根据信号源确定。本专利技术具有以下有益效果:近距离时,正反向串联线圈作为WPT/MRC系统的发射线圈能有效抑制频率分裂现象的产生,提高系统的传输效率;远距离时,正向线圈作为WPT/MRC系统的发射线圈,保持系统的高效率传输。附图说明图1是WPT/MRC系统结构示意图;图2是WPT/MRC系统的等效电路图;图3是正向线圈半径与匝数变化时和接收端单向线圈之间的互感随距离变化仿真示意图;图4是正向线圈匝数变化时和接收端单向线圈之间的互感随距离变化仿真示意图;图5是反向线圈匝数变化时和接收端单向线圈之间的互感随距离变化仿真示意图;图6是发射端正反向串联线圈和接收端单向线圈之间互感随距离变化仿真曲线示意图;图7是选取的最优设计示意图;图8是正向线圈作为发射线圈的无线电能传输系统传输效率与频率和收发线圈间距离之间的仿真示意图;图9是正反向串联线圈作为发射线圈的无线电能传输系统传输效率与频率和收发线圈间距离之间的仿真示意图;图10本文档来自技高网
...
磁耦合共振高效电能传输线圈设计方法

【技术保护点】
磁耦合共振高效电能传输线圈设计方法,其特征在于装置包括信号发生器、功率放大器、由内外同轴设置的反相线圈和正向线圈组成的发射端正反向串联线圈、接收端单向线圈、开关g、可调电容C1、可调电容C2和负载,其中发射端正反向串联线圈与接收端单向线圈之间预留间隔后相对同轴设置,所述信号发生器的信号输出端与功率放大器的信号输入端连接,功率放大器的正向输出端与可调电容C1的一端连接,可调电容C1的另一端与正向线圈的一端连接,正向线圈的另一端与反向线圈的一端连接,反向线圈的另一端与功率放大器的负向输出端连接,反向线圈与开关g并联连接,所述单向线圈的一端与负载的正向输入端连接,单向线圈的另一端与可调电容C2的一端连接,可调电容C2的另一端与负载的负向输入端连接;具体设计过程为:根据实际应用中充电目标的尺寸确定接收端单向线圈的大小即接收端单向线圈的半径和匝数;由激励源确定发射端正向线圈和反向线圈的半径;根据互感公式确定发射端正向线圈和反向线圈之间的匝数比,其中设定接收端单向线圈的半径为rR,匝数为nR,设定发射端正反向串联线圈的正向线圈的半径为rT

【技术特征摘要】
1.磁耦合共振高效电能传输线圈设计方法,其特征在于装置包括信号发生器、功率放大器、由内外同轴设置的反相线圈和正向线圈组成的发射端正反向串联线圈、接收端单向线圈、开关g、可调电容C1、可调电容C2和负载,其中发射端正反向串联线圈与接收端单向线圈之间预留间隔后相对同轴设置,所述信号发生器的信号输出端与功率放大器的信号输入端连接,功率放大器的正向输出端与可调电容C1的一端连接,可调电容C1的另一端与正向线圈的一端连接,正向线圈的另一端与反向线圈的一端连接,反向线圈的另一端与功率放大器的负向输出端连接,反向线圈与开关g并联连接,所述单向线圈的一端与负载的正向输入端连接,单向线圈的另一端与可调电容C2的一端连接,可调电容C2的另一端与负载的负向输入端连接;具体设计过程为:根据实际应用中充电目标的尺寸确定接收端单向线圈的大小即接收端单向线圈的半径和匝数;由激励源确定发射端正向线圈和反向线圈的半径;根据互感公式确定发射端正向线圈和反向线圈之间的匝数比,其中设定接收端单向线圈的半径为rR,匝数为nR,设定发射端正反向串联线圈的正向线圈的半径为rTf,反向线圈的半径为rTr,通过两单匝圆线圈之间的互感公式:求出发射端正反向串联线圈和接收端单向线圈之间的互感:式中,μ0为真空磁导率,r1和r2分别是两单匝圆线圈的半径,d为两单匝圆线圈间的距离,K(k)和E(k)分别是第一类和第二类椭圆积分;nTf和nTr分别是正向线圈和反向线圈的匝数,nR是接收端单向线圈匝数,rTf和rTr分别是正向线圈和反向线圈的半径,rR是接收端单向线圈半径,Dij是正向线圈或反向线圈的第i匝和接收端单向线圈的第j匝之间的距离,D为正向线圈或反向线圈与接收端单向线圈中心点之间的距离,a为导线半径,p为节距,密绕线圈节距p为0,可忽略不计;通过求M(D)关于D的微分得出公式:

【专利技术属性】
技术研发人员:王萌施艳艳高伟康范悦
申请(专利权)人:河南师范大学
类型:发明
国别省市:河南,41

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1