返混加氢处理反应器制造技术

技术编号:1679403 阅读:244 留言:0更新日期:2012-04-11 18:40
加氢处理反应器有多个垂直隔开的接触段,后者包括为使加工烃油返混的截头锥形挡板;反应器上有多个精制油出口,并与此相对应有多个环形静止室。(*该技术在2006年保护过期,可自由使用*)

【技术实现步骤摘要】
本专利技术是关于在细粉固体,一般是细粉催化剂存在下,用于烃类的加氢处理设备。更确切地讲,本专利技术是关于用于加氢裂化、加氢、加氢脱金属和加氢脱硫等过程,以及加工重质烃油如石油渣油的联合过程的三相体系高压设备。一般来讲,这类过程的特点是在压力为30-300公斤/厘米2、温度为250-500℃的条件下,含悬浮催化剂的烃油与氢分子进行反应。这类过程一般气体停留时间短10-200秒,煤油停留时间较长1×103-2×104秒,以及取决于催化剂寿命的催化剂停留时间更长1×104-1×108秒。为了便于回收下游加氢产品,必须首先将加氢处理反应器里的烃油与氢气和催化剂分开,最好在加氢处理反应器内进行分离操作。在立式反应器顶部留出保存气体的空间,即可容易地将气体分离开;与此相反,液固分离却很困难,因为细粉固体容易悬浮在烃油中,而且与烃油充分混合,导致接触停留时间延长。可以在大容量精制油静止区进行液固分离,但是,高压加氢处理反应器的特点是直径小,难以提供这种大容量静止区,即静止室。实际上,这种情况就把能分离精制油的加氢处理反应器的处理量限制在反应器提供的静止区的容量范围内。为此,本专利技术的目的是提供一种分离精制油能力比已知加氢处理反应器更大的加氢处理装置,而且,通过提供有效增加气体、液体和固体的接触效率的设备也改进了反应条件。根据本专利技术,加氢处理反应器配有实现浆油返混的装置,后者是由分离和回收精制烃油的装置与多个由截头锥形挡板构成的垂直间隔接触段所组成。-->图1示出已知的只有一个精制油出口的加氢处理反应器。图2示出本专利技术一种优选的加氢处理反应器。现在参照图1示出的先有技术加氢处理反应器,上部为扩大段的圆筒形压力容器(1)配置了顶封头(2)、底封头(3)、进气口(5)、进气口中心分配器(6)、出气口(7)、油料进口(8)、精制油出口(9)和浆油出口(10)。在压力容器的上部扩大段内安装了一个环形罩式内挡板(11),挡板上备有放气口(12),该挡板高出精制油出口(9)向下伸出与压力容器的筒形壳体形成了环形静止室(13)。在靠下的中心位置安装了截头锥形挡板(14),该挡板部分伸入罩式内挡板(11)内,同时形成了环形空间(15)。在截头锥形挡板(14)的下面,倾斜的环形挡板(16)从压力容器的筒形壳体上向下伸出,中心配置的锥形挡板(17)相邻安装在挡板(16)的底下。挡板(16)和(17)相配合对压力容器内的流体起到了“圆盘和圆环”折流作用。图1加氢处理反应器操作时,由油料进口(8)输入油料和催化剂,并从精制油出口(9)稳态排放控制的适量精制油,即基本上不含催化剂的处理过的烃油,使浆油液面(17)维持在精制油出口(9)之上,但是,远远低于排气口(7)。此外,为了慢慢地清除反应器里的废催化剂,从出口(10)排放浆油。氢气从进气口(5)和中心分配器(6)进入反应器,通常与气态反应产物一起穿过反应器向上流动,除反应所消耗的氢气外,剩余的氢气从放气口(7)排放回收并循环到反应器的进气口。现在参照图2所示的本专利技术最佳实施方案,立式压力容器配有筒形壳-->体(21)、顶封头(22)和底封头(23)。由固定在底封头上的进口、底封头内的气室和多个朝上垂直固定在中心位置的喷嘴组成的进气口装置(24)安装在压力容器的底部。容器的顶部安装着由固定在入孔上的出口组成的放气口装置(25)。筒形壳体(21)装有四个精制油出口(26),在这种特殊的容器内部,相应有四个接触段。一般讲,反应器可以有2-10个接触段。筒形壳体上还安装着由吸入喷嘴和插入浆油液面不深的浸渍管组成的油料进口装置(27)以及由靠近容器底部的出口喷嘴和位于远离容器中心轴线及最底下的截头锥形挡板外部的浸渍管组成的浆油出口装置(28)。该反应器有多个由精制油出口(26)和环形罩式挡板(29)组成的精制油出口装置;挡板(29)在精制油出口的上方附近与筒形壳体联接,高出精制油出口向下延伸,而且向内偏离筒形壳体构成环形静止室(30),其上有截面为环形盘的流体进口(31)。这种最佳实施方案的罩式挡板的上段为倾斜顶板,其外缘焊接在筒形壳的内壁上;下段为裙座部分,它与容器壳体相平行,并延长了静止室的深度,为的是更完全分离从精制油沉淀的催化剂,也可以在精制油出口上方用平顶板和沿顶板的内周线向下延伸的筒形裙座组成静止室,但是,这种结构不太符合要求,因为催化剂会聚集在平顶板的表面上。静止室一般安装着清除其顶部残留气体的装置(未示出),以保持溢流状态,该装置包括一个排气管,连通静止室的上部与相邻的位于容器轴线上的截头锥形挡板的内部。每个接触段由截头锥形挡板(32)组成,它在反应器内部轴向安装,并且与一个或一个以上的环形内挡板相邻隔开。截头锥形挡板的小头朝上,因此,底部进口(33)的截面比顶部出口(34)的大。-->截头锥形挡板与相邻的静止室的罩式挡板并列放置构成了中间环形通路(35)。环形通路水平面的截面积最小,并从罩式挡板(29)的底部或截头锥形挡板(32)的底部向上扩展,无论对哪块挡板而言,均要延伸到较高的位置。由这些挡板形成的中间环形通路一般称为流路,浆油经这些流路从反应器的顶部向底部循环流动,在流动中返混。截头锥形挡板和相邻的静止室的罩式挡板的垂直关系,除了可能影响截面流动面积以外,不是关键问题。为了减少静止室进口处的涡流现象,截头锥行挡板底部进口最好安置在静止室进口的下方。相邻的截头锥形挡板之间的垂直关系是:一块挡板的顶端出口与上方另一块挡板的底端进口紧密连接,由此形成内环形通路(36)。为了更好地妥善解决在无一接触段实现理想返混和在静止室进口出现极少的涡流的关系,前述的相邻截头锥形挡板的出口和进口应近似在同一水平面上。如果将截头锥形挡板套在上方的另一块截头锥形挡板内将会减少返混和静止室进口处的涡流,反之,增加相邻两块挡板的垂直间距将会出现相反的结果。接触段和精制油出口装置的总体关系必须通过实现淤浆油以相当高的循环速度从截头锥形挡板的底部向顶部流动来控制,淤浆油在截头锥形挡板的内部向上流动,在其外部向下流动,一般的速度为0.3-2米/秒,以促进催化剂在烃油中均匀悬浮。相反,要求静止室里的流速保持相当低,一般为0.0005-0.005米/秒,以促使催化剂沉淀,与烃油完全分离。就静止室而言,每个静止室进口的截面积应为反应器筒形壳体截面积的6-60%,最好在20-40%之间。淤浆油上下循环流路的截面积的大小不太重要,但应该近似相等。一般讲,中间环形通路的截面积与相对应的截头锥形底部进口-->的截面积之比为0.5-2。为了让淤浆油向下流动,必须确保由罩式挡板和截头锥形挡板构成的中间环形通路的截面积要足够大,一般,它们的最小截面积应为壳体截面积的10-50%。调节截头锥形挡板的斜度是限制截头锥形挡板内的气流、实现接触段之间的理想返混和总体限制容器直径的妥善办法。最佳方案是截头锥形挡板的进口截面积与出口截面积之比为1.5-3,与垂直轴线的锥角为2-15度。图2示出的加氢处理反应器操作时,从油料进口装置(27)输入油料和催化剂,从四个精制油出口(26)稳态排放控制的精制油,每个出口的液体流速近似相等,淤浆油液面(37)保持在最高处精制油出口(26)之上,但是,远远低于放气口(25)。氢气由进气口装置(本文档来自技高网...

【技术保护点】
加氢处理反应器,其特征在于包括:a)由筒形壳体及联接在筒形壳体上的顶封头和底封头构成的立式压力容器;b)在容器中轴向紧靠底部装有气体进口装置。c)容器内紧靠容器顶部安装的气体出口装置;d)安装在容器中的油料进口装置;e) 多个垂直间隔开的精制油出口装置,每个精制油出口装置包括固定在筒形壳体上的精制油出口和环形内罩式挡板;后者固定在精制油出口上方附近的筒形壳体上,而且高于精制油出口向下延伸,同时偏离筒形壳体与其构成环形静止室。静止室进口的截面积为筒形壳体截面积的6-60%。f)多个垂直间隔开的接触段,每个接触段包括轴向固定在筒形壳体内、并至少与一个环形内罩式挡板相邻隔开构成中间环形通路的截头锥形挡板,该板的底部为进口,顶部为出口,底部进口的截面积比顶部出口的大,位于下方的截头锥形挡板的顶部出 口紧联着上方相邻的截头锥形挡板的底部进口;g)靠容器底部附近并到截头锥形挡板外都安装有淤浆油出口装置。

【技术特征摘要】
US 1985-3-11 710,7421、加氢处理反应器,其特征在于包括:a)由筒形壳体及联接在筒形壳体上的顶封头和底封头构成的立式压力容器;b)在容器中轴向紧靠底部装有气体进口装置。c)容器内紧靠容器顶部安装的气体出口装置;d)安装在容器中的油料进口装置;e)多个垂直间隔开的精制油出口装置,每个精制油出口装置包括固定在筒形壳体上的精制油出口和环形内罩式挡板;后者固定在精制油出口上方附近的筒形壳体上,而且高于精制油出口向下延伸,同时偏离筒形壳体与其构成环形静止室。静止室进口的截面积为筒形壳体截面积的6-60%。f)多个垂直间隔开的接触段,每个接触段包括轴向固定在筒形壳体内、并至少与一个环形内罩式挡板相邻隔开构成中间环形通路的截头锥形...

【专利技术属性】
技术研发人员:罗伯特B阿姆斯特朗休伊伯特S琼根伯格帕苏帕蒂萨杜汗
申请(专利权)人:凯洛格总公司
类型:发明
国别省市:US[美国]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利