基于中子光栅干涉仪的暗场成像方法技术

技术编号:16364721 阅读:50 留言:0更新日期:2017-10-10 20:33
本发明专利技术公开了一种基于中子光栅干涉仪的暗场成像方法,其特征包括:1移动光栅,将中子光栅干涉仪的工作点固定在光强曲线的峰位;2分别获取背景投影图像和被成像物体的投影图像;3移动光栅,将中子光栅干涉仪的工作点固定在光强曲线的谷位;4分别获取背景投影图像和被成像物体的投影图像;5提取被成像物体的暗场信号。本发明专利技术能够准确提取被成像物体的暗场信号,克服低光子计数时相位步进法不能准确提取暗场信号的局限性,从而为被成像物体的准确、定量表征提供新途径。

Dark field imaging grating interferometer based on neutron method

The invention discloses a method for dark field imaging interferometer based on neutron grating, its features include: 1 mobile neutron grating, grating interferometer working point is fixed on the light intensity curve peak position; 2 respectively to obtain the background image and the projection image of the object; 3 moving grating, neutron diffraction grating interferometer the working point is fixed on the intensity curve of the valley; 4 respectively to obtain the background image and the projection image of the object; 5 were dark field imaging objects signal extraction. The invention can be extracted accurately by dark field signal imaging of the object, the phase stepping method to overcome the low photon counting can not accurately extract the limitations of dark field signal, so as to be imaged objects accurately, and provide a new way for quantitative characterization.

【技术实现步骤摘要】
基于中子光栅干涉仪的暗场成像方法
本专利技术涉及中子成像物理和方法领域,具体的说是一种基于中子光栅干涉仪的暗场成像方法。
技术介绍
作为一种新的成像技术,中子光栅干涉仪近年来得到了日益广泛的关注。利用中子光栅干涉仪,能够获得被成像物体的暗场图像,因而成为传统的基于衰减机制的中子成像技术的有力补充。中子暗场成像方法在材料科学领域具有广阔的应用前景,能够获得被成像物体的宏观水平上的空间分辨的小角散射信息,进而研究被成像物体内部的核作用势、磁作用势等。类似于X射线光栅干涉仪情形,在中子光栅干涉仪中,探测器获取的被成像物体的投影图像中同时包含了被成像物体的吸收、折射和暗场信号,即图像衬度来自于被成像物体吸收信号、折射信号、暗场信号的非线性混叠贡献。而定量表征、图像判读、计算机三维断层重建等实际应用都要求获取独立、纯粹的被成像物体吸收、折射和暗场信号。因此,必须发展基于中子光栅干涉仪的成像方法,能够从探测器获取的被成像物体的投影图像中准确分离纯粹的吸收、折射和散射信号,已经成为近年来的研究热点之一。目前,中子光栅干涉仪普遍采用相位步进法进行被成像物体的三种不同信号的分离。这种方法要求繁琐的机械步进光栅扫描,导致了冗长的成像实验时间,降低了中子光源的利用效率。特别地,相位步进法利用傅里叶变换操作来获取被成像物体的暗场信号。在低光子计数时,相位步进法提取不能准确提取被成像物体的暗场信号!这些局限性阻碍了中子光栅干涉仪在材料定量表征等领域的推广应用。因此,发展新的成像方法,克服相位步进法光栅步进扫描、不能准确提取暗场信号的局限性,是未来中子光栅干涉仪推广应用中必须解决的问题之一。
技术实现思路
本专利技术为避免现有成像方法的不足之处,提出一种基于中子光栅干涉仪的暗场成像方法,使得能够在低光子计数时准确提取被成像物体的暗场信号,克服相位步进法要求光栅步进扫描、不能准确提取暗场信号的局限性,从而为被成像物体的准确、定量表征提供新途径。为达到上述专利技术目的,本专利技术采用如下技术方案:本专利技术一种基于中子光栅干涉仪的暗场成像方法,所述中子光栅干涉仪包括:中子源、源光栅、速度选择器、相位光栅、分析光栅和探测器;在所述速度选择器和所述相位光栅之间设置有被成像物体;且所述被成像物体贴于所述相位光栅的内侧设置;在所述相位光栅的外侧设置有所述分析光栅;所述探测器贴于所述分析光栅的外侧设置;其特征是,所述暗场成像方法按如下步骤进行:步骤1、固定所述相位光栅和所述分析光栅,并移动所述源光栅,将所述中子光栅干涉仪的工作点固定在光强曲线的峰位;所述移动方向为同时垂直于光轴和光栅栅条的方向;步骤2、依次启动所述中子源、所述速度选择器和所述探测器,并设置曝光时间为t;利用所述探测器按照所述曝光时间t获取第一背景投影图像I1后,关闭所述中子源;步骤3、将所述被成像物体放置到所述相位光栅的视场中央,启动所述中子源,并利用所述探测器按照所述曝光时间t获取所述被成像物体的第一投影图像I′1后,依次关闭所述中子源、所述速度选择器和所述探测器;步骤4、固定所述相位光栅和所述分析光栅,并移动所述源光栅,将所述中子光栅干涉仪的工作点固定在光强曲线的谷位;所述移动方向为同时垂直于光轴和光栅栅条的方向;步骤5、依次启动所述中子源、所述速度选择器和所述探测器,并设置曝光时间为t;利用所述探测器按照所述曝光时间t获取第二背景投影图像I2后,关闭所述中子源;步骤6、将所述被成像物体放置到所述相位光栅的视场中央,启动所述中子源,并利用所述探测器按照所述曝光时间t获取所述被成像物体的第二投影图像I′2后,依次关闭所述中子源、所述速度选择器和所述探测器;步骤7、利用式提取所述被成像物体的暗场信号DF:以所述被成像物体的暗场信号DF作为所述暗场成像方法的结果。与已有技术相比,本专利技术的有益效果是:1、本专利技术基于中子光栅干涉仪,提出了暗场成像方法,通过简化成像方程,解决了低光子计数时物体暗场信号的准确提取问题;克服了现有相位步进法要求光栅机械扫描的局限性,简化了成像过程,实现了准确、快速的中子暗场成像;2、与现有的相位步进法相比,本专利技术摒弃了傅里叶变换操作,简化了中子暗场信号的提取方程,实现了低光子计数时物体暗场信号的准确提取;3、与现有的相位步进法相比,本专利技术在获取物体投影图像时,通过将中子光栅干涉仪固定在光强曲线的峰位或谷位,摒弃了光栅步进扫描,提高了数据采集效率。附图说明图1为现有技术中中子光栅干涉仪示意图;图2为现有技术中中子光栅干涉仪的光强曲线图;图3为本专利技术中被成像物体7的暗场信号的提取结果图;图中标号:1中子源;2源光栅;3速度选择器;4相位光栅;5分析光栅;6探测器;7被成像物体。具体实施方式如图1所示,中子光栅干涉仪包括:中子源1、源光栅2、速度选择器3、相位光栅4、分析光栅5和探测器6;在速度选择器3和相位光栅4之间设置有被成像物体7;被成像物体7贴于相位光栅4的内侧设置;在相位光栅4的外侧设置有分析光栅5;探测器6贴于分析光栅5的外侧设置;本实施例中,基于中子光栅干涉仪的暗场成像方法是按如下步骤进行:步骤1、固定相位光栅4和分析光栅5,并移动源光栅2,将中子光栅干涉仪的工作点固定在光强曲线的峰位,即图2所示的光强最大值处;移动方向为同时垂直于光轴和光栅栅条的方向;步骤2、依次启动中子源1、速度选择器3和探测器6,并设置曝光时间为t1;利用探测器6按照曝光时间t1获取第一背景投影图像I1后,关闭中子源1;步骤3、将被成像物体7放置到相位光栅4的视场中央,启动中子源1,并利用探测器6按照曝光时间t1获取被成像物体7的第一投影图像I′1后,依次关闭中子源1、速度选择器3和探测器6;将中子光栅干涉仪的工作点固定在光强曲线的峰位(即光强最大值处),探测器6获取的被成像物体7的第一投影图像I′1满足:I′1=I1·T·(1+DF)(3.1)式(3.1)中,T是被成像物体7的吸收信号;DF是被成像物体7的暗场信号。步骤4、固定相位光栅4和分析光栅5,并移动源光栅2,将中子光栅干涉仪的工作点固定在光强曲线的谷位,即图2所示的光强最小值处;移动方向为同时垂直于光轴和光栅栅条的方向;步骤5、依次启动中子源1、速度选择器3和探测器6,设置曝光时间为t2;利用探测器6按照曝光时间t2获取第二背景投影图像I2后,关闭中子源1;步骤6、将被成像物体7放置到相位光栅4的视场中央,启动中子源1,并利用探测器6按照曝光时间t2获取被成像物体7的第二投影图像I′2后,依次关闭中子源1、速度选择器3和探测器6;将中子光栅干涉仪的工作点固定在光强曲线的谷位(即光强最小值处),探测器6获取的被成像物体7的第二投影图像I′2满足:I′2=I2·T·(1-DF)(6.1)式(6.1)中,T是被成像物体7的吸收信号;DF是被成像物体7的暗场信号。步骤7、利用式(1)提取被成像物体7的暗场信号DF,利用式(3.1)、(6.1),得到,I′1/I1=T·(1+DF)I′2/I2=T·(1-DF)(8.1)利用式(8.1),得到,利用式(8.2),得到被成像物体7的暗场信号DF,图3为被成像物体7的暗场信号的提取结果图,等效波长λ为4埃,背景光子计数为100。根据图3,利用式(1)提取的暗场信号实验值与理论值吻合的很好本文档来自技高网
...
基于中子光栅干涉仪的暗场成像方法

【技术保护点】
一种基于中子光栅干涉仪的暗场成像方法,所述中子光栅干涉仪包括:中子源(1)、源光栅(2)、速度选择器(3)、相位光栅(4)、分析光栅(5)和探测器(6);在所述速度选择器(3)和所述相位光栅(4)之间设置有被成像物体(7);且所述被成像物体(7)贴于所述相位光栅(4)的内侧设置;在所述相位光栅(4)的外侧设置有所述分析光栅(5);所述探测器(6)贴于所述分析光栅(5)的外侧设置;其特征是,所述暗场成像方法按如下步骤进行:步骤1、固定所述相位光栅(4)和所述分析光栅(5),并移动所述源光栅(2),将所述中子光栅干涉仪的工作点固定在光强曲线的峰位;所述移动方向为同时垂直于光轴和光栅栅条的方向;步骤2、依次启动所述中子源(1)、所述速度选择器(3)和所述探测器(6),并设置曝光时间为t1;利用所述探测器(6)按照所述曝光时间t1获取第一背景投影图像I1后,关闭所述中子源(1);步骤3、将所述被成像物体(7)放置到所述相位光栅(4)的视场中央,启动所述中子源(1),并利用所述探测器(6)按照所述曝光时间t1获取所述被成像物体(7)的第一投影图像I1′后,依次关闭所述中子源(1)、所述速度选择器(3)和所述探测器(6);步骤4、固定所述相位光栅(4)和所述分析光栅(5),并移动所述源光栅(2),将所述中子光栅干涉仪的工作点固定在光强曲线的谷位;所述移动方向为同时垂直于光轴和光栅栅条的方向;步骤5、依次启动所述中子源(1)、所述速度选择器(3)和所述探测器(6),并设置曝光时间为t2;利用所述探测器(6)按照所述曝光时间t2获取第二背景投影图像I2后,关闭所述中子源(1);步骤6、将所述被成像物体(7)放置到所述相位光栅(4)的视场中央,启动所述中子源(1),并利用所述探测器(6)按照所述曝光时间t2获取所述被成像物体(7)的第二投影图像I2′后,依次关闭所述中子源(1)、所述速度选择器(3)和所述探测器(6);步骤7、利用式(1)提取所述被成像物体(7)的暗场信号DF:...

【技术特征摘要】
1.一种基于中子光栅干涉仪的暗场成像方法,所述中子光栅干涉仪包括:中子源(1)、源光栅(2)、速度选择器(3)、相位光栅(4)、分析光栅(5)和探测器(6);在所述速度选择器(3)和所述相位光栅(4)之间设置有被成像物体(7);且所述被成像物体(7)贴于所述相位光栅(4)的内侧设置;在所述相位光栅(4)的外侧设置有所述分析光栅(5);所述探测器(6)贴于所述分析光栅(5)的外侧设置;其特征是,所述暗场成像方法按如下步骤进行:步骤1、固定所述相位光栅(4)和所述分析光栅(5),并移动所述源光栅(2),将所述中子光栅干涉仪的工作点固定在光强曲线的峰位;所述移动方向为同时垂直于光轴和光栅栅条的方向;步骤2、依次启动所述中子源(1)、所述速度选择器(3)和所述探测器(6),并设置曝光时间为t1;利用所述探测器(6)按照所述曝光时间t1获取第一背景投影图像I1后,关闭所述中子源(1);步骤3、将所述被成像物体(7)放置到所述相位光栅(4)的视场中央,启动所述中子源(1),并利用所述探测器(6)按照所述曝光时间t1获取所述被成像物体(7)的第...

【专利技术属性】
技术研发人员:王志立刘达林
申请(专利权)人:合肥工业大学
类型:发明
国别省市:安徽,34

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1