一种基于标量磁力仪阵列对远距离磁性目标定位的方法技术

技术编号:15998193 阅读:40 留言:0更新日期:2017-08-15 13:30
本发明专利技术提供的是一种基于标量磁力仪阵列对远距离磁性目标定位的方法。(1)构建由标量传感器组成的磁力仪阵列;(2)由磁力仪阵列测量目标产生的磁异常;(3)对两个传感器的测量值做差;(4)利用粒子群算法对目标的位置进行求解;(5)由质量指数对解的可信度进行评估;(6)输出结果。本发明专利技术所提出的优化方法降低了利用地磁异常对目标定位的求解难度,为地磁定位的求解提供了新的参考。而且,构建的质量指标可以用作允许接受或拒绝目标的定位的标准。

Method for positioning magnetic target at long distance based on scalar magnetometer array

The invention provides a method for positioning a magnetic target at a long distance based on a scalar magnetometer array. (1) construction of the magnetometer array composed of scalar sensor; (2) produced by the magnetometer array measurement target magnetic anomaly; (3) measurement of the two sensor values; (4) is solved using particle swarm algorithm to estimate the position; (5) to evaluate the credibility of the solution quality index (6) output. The optimization method of the invention reduces the difficulty of solving the target location by using geomagnetic anomalies, and provides a new reference for solving the geomagnetic positioning. Furthermore, the quality indicators constructed can be used as a standard for allowing for acceptance or rejection of the target's location.

【技术实现步骤摘要】
一种基于标量磁力仪阵列对远距离磁性目标定位的方法
本专利技术设计的是一种磁性目标的定位方法。
技术介绍
地磁场是反映宇宙演变、地球演变、地质构造演变及地震活动等过程的重要物理量之一。地磁场研究成果在航海、航空、航天、能源、矿产、安全、考古等领域中有着广泛而重要的应用。地磁场是地球的一个天然的物理场,它有各种不同的起源,由不同变化规律的磁场成分叠加而成。按照场源位置划分,地磁场可以分为内源场和外源场。如果考虑地磁场随时间的变化特征,将随时间变化较快的地磁场成为地球的变化磁场,随时间变化较慢或者基本不变的地磁场成为地球的稳定磁场。由于地磁场的特性,地磁场可以被用于许多领域,在各种应用领域中,确定目标物的位置是一项重要的应用。如进行沉没船只的货物抢救、海滩救援作业、港口船舶监测应用等,都需要对水下目标物进行准确而快速的定位。而在海况复杂的区域,地磁场反而较为稳定,因此磁测技术是非常有效的目标定位方法,人们可以通过对磁异常的反演,获得该目标物体的一些信息(如,几何参数,位置参数等)。对磁性目标进行定位时,一般需要能够测量地磁分量的矢量传感器或者能够测量地磁总场的标量传感器中的一种。在应用矢量传感器进行测量过程中,传感器的安装很复杂,安装时姿态方位一定要严格校正,在运动过程中还要实时补偿姿态和方位变化的影响,校正姿态方位还要使用其他高精度定位系统。而且矢量传感器的精度较低,在nT左右,同时由于地磁场随时间变化的影响,基于矢量传感器的方法的测量距离不能太长。相比于矢量传感而言,探测地磁总场的标量传感器光泵磁力仪具有高可靠高精度的特点,测量的地磁总场值不会因为传感器的旋转而产生变化,同时最高分辨率可达fT量级。由于测量地磁总场,光泵磁力仪安装使用不需要姿态方位校准,非常方便。在对目标的定位中,对目标的各种参量的计算是非常重要的,通常包括,目标的空间位置坐标、地磁倾角、地磁偏角、目标的磁矩。参量较多,求解较为复杂。因此,优化求解过程,降低求解难度是较为重要的。
技术实现思路
本专利技术的目的在于提供一种定位精度高的基于标量磁力仪阵列对远距离磁性目标定位的方法。本专利技术的目的是这样实现的:(1)构建由标量传感器组成的磁力仪阵列;(2)由磁力仪阵列测量目标产生的磁异常;(3)对两个传感器的测量值做差;(4)利用粒子群算法对目标的位置进行求解;(5)由质量指数对解的可信度进行评估;(6)输出结果;所述磁力仪阵列由7个标量传感器组成,第一标量传感器位于坐标原点,第二标量传感器的空间位置为(0,2,0),第三标量传感器的位置为(0,-2,0),第四标量传感器的位置为(2,0,0),第五标量传感器的位置为(-2,0,0),第六标量传感器的位置为(2,0,2),第七标量传感器的位置为(-2,0,2)。本专利技术还可以包括:1、所述磁异常ΔB表示为:其中,Bm为地磁场值,BE为地磁场本身,BA为感生磁场,u是BA的方向向量,I和D分别表示环境磁场的磁倾角和磁偏角,(xt,yt,zt)是目标的空间位置坐标,θ是目标磁矩和X-Y平面夹角,是目标磁矩和X轴的夹角,m是目标的磁矩大小。2、利用粒子群算法对目标的位置进行求解的适应度函数为其中:ΔBij是第i个传感器和第j个传感器磁异常之差,ΔBmn是第m个传感器和第n个传感器磁异常之差。3、质量指数q为:其中,S和M分别为求解出m的标准差和均值,m是目标磁矩的大小。专利技术提出了一种基于标量磁力仪阵列对远距离磁性目标定位的方法,具体地说是在利用磁异常对目标定位时,通过分离目标磁矩,并基于此制定最优化问题来估计目标的位置和磁性参数。本专利技术的方法减少了所需求解的参量个数,降低了利用地磁异常对目标定位的求解难度。然后,本专利技术构建出了特殊的适应度函数利用粒子群算法实现对目标位置的求解。最后,定义质量指数以评估由优化方法计算的解。本专利技术首先分离磁矩的大小,并基于它制定优化方法,用于估计目标的位置和磁性参数。然后,构建出了特殊的适应度函数,利用粒子群算法实现对目标位置的求解。最后,定义质量指数以评估由优化方法计算的解。其优点为:通过分离目标磁矩,使求解目标过程中的参量的个数由6个减少为5个,降低了求解难度,为地磁定位的求解提供了新的参考;而且基于分离目标磁矩构建的适应度函数满足了粒子群算法的适应度函数要求,方便使用粒子群算法就行求解,提高了效率;定义的质量指数可以评估解的精确度,可以用作允许接受或拒绝目标的定位的标准。验证:通过仿真实验对本方法进行验证,结果表明本方法具有较高的定位精度。附图说明图1标量传感器阵列示意图。图2目标定位过程流程图。图3X-Y平面内的目标位置。图4X方向的相对偏差。图5Y方向的相对偏差。图6目标磁矩的倾角和偏角。图7计算出的目标磁矩。图8质量指数。具体实施方式下面结合附图举例对本专利技术作进一步描述。结合图2,使用标量磁力仪阵列定位磁性目标的方法,包括以下步骤:步骤一:构建如图1所示的磁力仪阵列;步骤二:由目标产生的磁异常在直角坐标系下可以表示为:其中μ0=4π×10-7H/m是真空磁导率。m是目标磁矩的大小,θ是目标磁矩和X-Y平面夹角,是目标磁矩和X轴的夹角。x=xt-xs,y=yt-ys,z=zt-zs。步骤三:磁异常的近似表示实际中,测得的地磁场值Bm,包括地磁场本身BE,感生磁场BA。可以表示为:Bm=BE+BA(2)其中,由运动目标产生的磁场值相比地磁场本身要小很多,经过近似处理,Bm可以表示为:然后,由标量传感器测量的磁异常ΔB可以表示为:其中u是BA的方向向量,I和D分别表示环境磁场的磁倾角和磁偏角。由公式4可以看出,磁异常可以看作是BA在BE上的投影。步骤四:通过两个传感器的测量值做差可以消除地磁场变化对目标定位的影响。其中,i和j表示阵列中的第几个传感器。步骤五:分离目标磁矩的大小,制定最优化问题,构建适应度函数利用粒子群算法进行求解。由公式5可以得到:分离出磁矩的大小后,所需求解的目标参量由6个降低到5个,降低了求解难度。基于此构建适应度函数利用粒子群算法对目标的参量进行求解。步骤六:定义质量指数q以评估由优化方法计算的解。其中,S和M分别为求解出m的标准差和均值。q的大小在0和1之间,质量指数的值越高,表明解的精度越高。结合图1,阵列有7个磁力仪组成,传感器1位于坐标原点,传感器2的空间位置为(0,2,0),传感器3的位置为(0,-2,0),传感器4的位置为(2,0,0),传感器5的位置为(-2,0,0),传感器6的位置为(2,0,2),传感器7的位置为(-2,0,2)。通过分离目标磁矩的大小,构建了最优化问题来估计目标的位置和磁性参数。采用光泵磁传感器时,X轴指向地理北极,Y轴指向地理东,Z轴垂直向下。设置的目标磁矩参数为1000Am2,目标磁矩倾角为40°,目标磁矩偏角为70°。目标在Z方向的距离为1m,目标在水平面内移动沿着平行于x轴的方向前进,距x轴15m,速度为1m/s,采样频率为1Hz。光泵磁力仪的噪声为0.6pT/√Hz,测量误差设置为:均值为0nT,标准差为0.04nT。由已知的参量数值利用粒子群算法使用适应度函数(公式7)对目标的X-Y平面内的位置、目标的倾角和偏角、目标磁矩进行反演。数据结果如图3、图6、图7所示。评价解的精度的质量指数如图5所本文档来自技高网
...
一种基于标量磁力仪阵列对远距离磁性目标定位的方法

【技术保护点】
一种基于标量磁力仪阵列对远距离磁性目标定位的方法,其特征是:(1)构建由标量传感器组成的磁力仪阵列;(2)由磁力仪阵列测量目标产生的磁异常;(3)对两个标量传感器的测量值做差;(4)利用粒子群算法对目标的位置进行求解;(5)由质量指数对解的可信度进行评估;(6)输出结果;所述磁力仪阵列由7个标量传感器组成,第一标量传感器位于坐标原点,第二标量传感器的空间位置为(0,2,0),第三标量传感器的位置为(0,‑2,0),第四标量传感器的位置为(2,0,0),第五标量传感器的位置为(‑2,0,0),第六标量传感器的位置为(2,0,2),第七标量传感器的位置为(‑2,0,2)。

【技术特征摘要】
1.一种基于标量磁力仪阵列对远距离磁性目标定位的方法,其特征是:(1)构建由标量传感器组成的磁力仪阵列;(2)由磁力仪阵列测量目标产生的磁异常;(3)对两个标量传感器的测量值做差;(4)利用粒子群算法对目标的位置进行求解;(5)由质量指数对解的可信度进行评估;(6)输出结果;所述磁力仪阵列由7个标量传感器组成,第一标量传感器位于坐标原点,第二标量传感器的空间位置为(0,2,0),第三标量传感器的位置为(0,-2,0),第四标量传感器的位置为(2,0,0),第五标量传感器的位置为(-2,0,0),第六标量传感器的位置为(2,0,2),第七标量传感器的位置为(-2,0,2)。2.根据权利要求1所述的基于标量磁力仪阵列对远距离磁性目标定位的方...

【专利技术属性】
技术研发人员:康崇樊黎明郑权康曦元周健张晓峻
申请(专利权)人:哈尔滨工程大学
类型:发明
国别省市:黑龙江,23

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1