The invention provides a III V nitride semiconductor LED full-color display device structure and preparation method, including: Based on active matrix drive silicon backplane, including a plurality of driving units; LED micro array of pixels in the active matrix driving silicon backplane surface comprises a plurality of micro LED pixels; the micro pixel LED includes a light emitting material layer and the anode, the anode anode drive unit LED micro pixels respectively with the corresponding connection; anode surface material layer in LED micro pixel luminescence; the first conductivity type III V nitride layer, a light-emitting material layer in the surface of LED micro pixels, and each pixel of LED micro phase connection; color display desired color conversion film, III V nitride layer located on the surface of the first conductivity type. III V first conductivity type nitride layer of the LED and the micro pixel color conversion film thickness by a small connected space can minimize the adjacent pixels of the micro LED, in order to improve the resolution, but also can reduce the crosstalk between adjacent color conversion film.
【技术实现步骤摘要】
基于III-V族氮化物半导体的LED全彩显示器件结构及制备方法
本专利技术属于半导体
,特别是涉及一种基于III-V族氮化物半导体的LED全彩显示器件结构及制备方法。
技术介绍
近年来,随着III-V族氮化物(III-Nitride)半导体LED芯片技术和生产工艺的日益进步,超高亮度外延片和芯片生产、封装关键技术的不断突破,其成本也不断降低,基于氮化物(III-Nitride)半导体LED像素的LED显示器以其远超液晶覆硅(liquid-crystal-on-silicon,LCOS)和有机半导体LED(Organic-LED,OLED)的卓越性能,成为LCOS和OLED之外的另一个更具技术竞争力和发展前途的微显示技术。目前,基于氮化物(III-Nitride)半导体LED阵列的显示技术面临的一个挑战是如何实像全彩显示,这主要是由于在现有的技术条件下,还很难在同一单晶衬底上通过外延的方法制造半导体红、绿、蓝LED器件。在氮化物(III-Nitride)半导体LED彩色显示领域,现有的专利(包括专利申请)技术可以归纳为下面几类:1.采用多颗(至少三颗以上)相互分离并且独立的红、绿、蓝LED芯片通过封装或键和的方式集成到同一硅基电路(薄膜晶体管TFT或单晶硅CMOS)基板上形成二维LED芯片阵列,并单独驱动其中的每一颗芯片,实现彩色显示效果(US09343448,PCT/EP2015/067749,PCT/EP2015/067751,PCT/CN2013/089079,PCT/CN2013/089719);2.采用多颗相互分离并且独立的白光LED芯片封装 ...
【技术保护点】
一种基于III‑V族氮化物半导体的LED全彩显示器件结构,其特征在于,所述基于III‑V族氮化物半导体的LED全彩显示器件结构包括:有源矩阵驱动硅基背板,所述有源矩阵驱动硅基背板内包括若干个驱动单元,每个所述驱动单元均包括阳极及共用阴极;LED微像素阵列,位于所述有源矩阵驱动硅基背板表面,包括若干个LED微像素;所述LED微像素在所述有源矩阵驱动硅基板表面呈阵列分布;各所述LED微像素均包括发光材料层及阳极,各所述LED微像素的阳极均位于所述有源矩阵驱动硅基背板表面,且分别与与其对应的所述驱动单元的阳极相连接;所述发光材料层位于所述LED微像素的所述阳极表面;第一导电类型III‑V族氮化物层,位于各所述LED微像素的发光材料层表面,且将各所述LED微像素相连接;彩色显示所需的颜色转换膜,位于所述第一导电类型的III‑V族氮化物层表面。
【技术特征摘要】
1.一种基于III-V族氮化物半导体的LED全彩显示器件结构,其特征在于,所述基于III-V族氮化物半导体的LED全彩显示器件结构包括:有源矩阵驱动硅基背板,所述有源矩阵驱动硅基背板内包括若干个驱动单元,每个所述驱动单元均包括阳极及共用阴极;LED微像素阵列,位于所述有源矩阵驱动硅基背板表面,包括若干个LED微像素;所述LED微像素在所述有源矩阵驱动硅基板表面呈阵列分布;各所述LED微像素均包括发光材料层及阳极,各所述LED微像素的阳极均位于所述有源矩阵驱动硅基背板表面,且分别与与其对应的所述驱动单元的阳极相连接;所述发光材料层位于所述LED微像素的所述阳极表面;第一导电类型III-V族氮化物层,位于各所述LED微像素的发光材料层表面,且将各所述LED微像素相连接;彩色显示所需的颜色转换膜,位于所述第一导电类型的III-V族氮化物层表面。2.根据权利要求1所述的基于IIII-V族氮化物半导体的LED全彩显示器件结构,其特征在于:所述发光材料层包括量子阱层及第二导电类型IIII-V族氮化物层,所述第二导电类型IIII-V族氮化物层位于所述LED微像素的阳极表面,所述量子阱层位于所述第二导电类型IIII-V族氮化物层表面。3.根据权利要求1所述的基于III-V族氮化物半导体的LED全彩显示器件结构,其特征在于:所述驱动单元的数量与所述LED微像素的数量相同。4.根据权利要求1所述的基于III-V族氮化物半导体的LED全彩显示器件结构,其特征在于:还包括透明电极层,位于所述第一导电类型IIII-V族氮化物层表面,且位于所述第一导电类型IIII-V族氮化物层与所述颜色转换膜之间,构成所述LED微像素阵列的公共阴极,所述透明电极层与所述有源矩阵驱动硅基背板的公共阴极通过桥联金属相连接。5.根据权利要求4所述的基于III-V族氮化物半导体的LED全彩显示器件结构,其特征在于:还包括绝缘透明薄膜,所述绝缘透明薄膜位于所述透明电极层表面,且位于所述透明电极层与所述颜色转换膜之间。6.根据权利要求1所述的基于III-V族氮化物半导体的LED全彩显示器件结构,其特征在于:还包括边缘公共阴极及绝缘透明薄膜,所述边缘公共阴极位于所述LED微像素阵列外侧,且位于所述第一导电类型III-V族氮化物层表面,所述边缘公共阴极与所述有源矩阵驱动硅基背板的公共阴极通过桥连金属相连接;所述绝缘透明薄膜位于所述第一导电类型IIII-V族氮化物层表面,且位于所述第一导电类型IIII-V族氮化物层与所述颜色转换膜之间。7.根据权利要求1所述的基于III-V族氮化物半导体的LED全彩显示器件结构,其特征在于:所述LED微像素为紫光LED微像素或紫外光LED微像素,所述颜色转换膜包括:红光转换膜、绿光转换膜及蓝光转换膜,所述红光转换膜、所述绿光转换膜及所述蓝光转换膜在所述第一导电类型IIII-V族氮化物层表面呈阵列分布,且一一对应设置于所述LED微像素正上方。8.根据权利要求1所述的基于IIII-V族氮化物半导体的LED全彩显示器件结构,其特征在于:所述LED微像素为小于480nm短波长光LED微像素,所述颜色转换膜包括:红光滤光膜、绿光滤光膜、蓝光滤光膜及白光转换膜,所述白光转换膜位于所述第一导电类型III-V族氮化物表面,所述红光滤光膜、所述绿光滤光膜及所述蓝光滤光膜在所述白光转换膜表面呈阵列分布,且一一对应设置于所述LED微像素正上方。9.根据权利要求8所述的基于IIII-V族氮化物半导体的LED全彩显示器件结构,其特征在于:所述白光转换膜的厚度小于5倍相邻所述LED微像素之间的间距。10.根据权利要求1所述的基于III-V族氮化物半导体的LED全彩显示器件结构,其特征在于:所述LED微像素为蓝光LED微像素,所述颜色转换膜包括红光转换膜及绿光转换膜,所述红光转换膜及所述绿光转换膜在所述第一导电类型IIII-V族氮化物层表面呈阵列分布,且一一对应设置于部分所述LED微像素正上方。11.根据权利要求1所述的基于III-V族氮化物半导体的LED全彩显示器件结构,其特征在于:还包括钝化层,所述钝化层位于各所述LED微像素中裸露的所述发光材料层的表面侧壁及各所述LED微像素之间的所述第一导电类型III-V族氮化物层的表面。12.根据权利要求1至11中任一项所述的基于III-V族氮化物半导体的LED全彩显示器件结构,其特征在于:所述驱动单元包括:开关-驱动晶体管,包括栅极、源极及漏极;所述开关-驱动晶体管的漏极与一电流源相连接,源极与所述LED微像素的阳极相连接;第一开关晶体管,包括栅极、源极及漏极;所述第一开关晶体管的栅极与同步开关信号线相连接,源极与所述开关-驱动晶体管的栅极相连接;闩锁寄存器,包括输入端及输出端;所述闩锁寄存器的输入端与脉宽或幅度调制信号相连接,输出端与所述第一开关晶体管的漏极相连接。13.根据权利要求12所述的基于IIII-V族氮化物半导体的LED全彩显示器件结构,其特征在于:所述驱动单元还包括第二开关晶体管,所述第二开关晶体管包括栅极、源极及漏极,所述第二开关晶体管的栅极与地址总线相连接,漏极与数据总线相连接,源极与所述闩锁寄存器的输入端相连接。14.根据权利要求12所述的基于III-V族氮化物半导体的LED全彩显示器件结构,其特征在于:所述闩锁寄存器包括;第一PMOS晶体管,包括栅极、源极及漏极;所述第一PMOS晶体管的漏极与电源电压相连接;第二PMOS晶体管,包括栅极、源极及漏极;所述第二PMOS晶体管的漏极与所述电源电压相连接;第一NMOS晶体管,包括栅极、源极及漏极;所述第一NMOS晶体管的栅极与所述第一PMOS晶体管的栅极相连接,漏极与所述第一PMOS管的源极相连接作为所述闩锁寄存器的输出端,源极接地;第二NMOS晶体管,包括栅极、源极及漏极;所述第二NMOS晶体管的栅极与所述第二PMOS晶体管的栅极相连接,漏极与所述第二PMOS管的源极相连接作为所述闩锁寄存器的输入端,源极接地。15.根据权利要求12所述的基于IIII-V族氮化物半导体的LED全彩显示器件结构,其特征在于:所述闩锁寄存器包括;第三NMOS晶体管,包括栅极、源极及漏极;所述第三NMOS晶体管的栅极与所述地址总线相连接,漏极为所述闩锁寄存器的输出端;电容,一端与所述第三NMOS晶体管的源极相连接作为所述闩锁寄存器的输出端,另一端接地。16.一种基于III-V族氮化物半导体的LED全彩显示器件结构的制备方法,其特征在于,所述制备方法包括如下步骤:1)提供生长衬底,在所述生长衬底表面依次生长缓冲层、第一导电类型III-V族氮化物层、量子阱层及第二导电类型III-V族氮化物层;2)选择性刻蚀所述第二导电类型III-V族氮化物层及所述量...
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。