对静息态复数fMRI数据进行ICA后处理消噪的相位精确范围检测方法技术

技术编号:15691959 阅读:106 留言:0更新日期:2017-06-24 05:35
本发明专利技术公开了一种对静息态复数fMRI数据进行ICA后处理消噪的相位精确范围检测方法,属于生物医学信号处理领域。对于某一待消噪SM成分,在区间(0,π/2]范围内,采用等间距相位扫描方法,得到K个待检测的有效体素相位范围

A method for detecting the phase accurate range of ICA in post resting complex fMRI data is proposed

The invention discloses a phase accurate range detection method for denoising ICA data in a resting state complex fMRI data, belonging to the field of biomedical signal processing. For a SM component to be denoised, an effective phase range of K is obtained by using equal interval phase scanning method in the range (0, PI /2] range)

【技术实现步骤摘要】
对静息态复数fMRI数据进行ICA后处理消噪的相位精确范围检测方法
本专利技术涉及静息态复数fMRI数据的ICA分析,特别是涉及一种ICA后处理消噪的相位范围检测方法。
技术介绍
功能磁共振成像(functionalmagneticresonanceimaging,fMRI)是一种脑成像数据,凭借其无损伤和高空间分辨率特点,已成为脑功能研究和脑疾病诊断的重要工具之一。根据实验方式的不同,fMRI数据可分为任务态数据和静息态数据。与任务态数据相比,静息态数据不需要被试者执行特定任务,只需平躺就可以采集,因此更适于脑疾病患者。目前,数据驱动的独立成分分析(independentcomponentanalysis,ICA)方法已在静息态fMRI数据分析中得到了广泛应用。ICA能够将静息态fMRI数据分离为空间激活脑区(spatialmap,SM)成分,以及与其对应的时间过程(timecourse,TC)成分。基于SM或TC成分可进行脑功能连接分析,发现健康被试和脑疾病(如精神分裂症、阿尔兹海默病、抑郁症、躁郁症等)被试的显著性差异,进而用于脑疾病研究和诊断。完备的fMRI数据是复数的,包括幅值数据和相位数据。因为相位数据所含信息的特异性,fMRI复数数据(幅值数据+相位数据)提取的脑功能信息远大于fMRI幅值数据。例如,针对任务态fMRI数据,ICA从复数数据中提取的任务相关成分体素比幅值数据多139%,提取的默认网络成分体素比幅值数据多331%(见M.C.Yu,Q.H.Lin,L.D.Kuang,X.F.Gong,F.Cong,andV.D.Calhoun,ICAoffullcomplex-valuedfMRIdatausingphaseinformationofspatialmaps,JournalofNeuroscienceMethods,vol.249,pp.75-91,2015)。然而,为了充分利用复数fMRI数据,需要对上述ICA方法提取的SM成分进行ICA后处理相位消噪。简而言之,就是利用相位对ICA分离的SM成分体素进行挑选,相位范围在[-π/4,π/4]之内的体素被视为有效体素,在相位范围[-π/4,π/4]之外的体素被视为噪声体素而去除(详见“林秋华,于谋川,龚晓峰,丛丰裕,一种对复数fMRI数据进行ICA分析的后处理消噪方法,专利号201410191416.6”)。根据目前的文献报道,尚未见到有关静息态复数fMRI数据的ICA研究。由ICA对任务态复数fMRI数据的处理方法可知,如果对静息态复数fMRI数据进行ICA分析,同样需要进行ICA后处理相位消噪,以获取更多的脑功能信息。但是,因为静息态数据和任务态数据的实验范式差异较大,其脑网络激活特性也存在着较大差异。因此,需要专利技术一种新的相位范围检测方法,适于在静息态fMRI数据的ICA后处理相位消噪中,精确区分有效体素和噪声体素。
技术实现思路
本专利技术的目的在于,利用相位扫描方法,结合待消噪SM成分的先验信息,求解有效体素的精确相位范围。本专利技术的技术方案是,对于某一ICA分离的含噪SM成分,根据其先验信息构建该SM成分的参考SM幅值;设有效体素的精确相位范围为在区间(0,π/2]范围内等间距地取K个值,记为k=1,...,K,K为大于等于9的正整数,得到K个待检测的有效体素相位范围对于每个利用对SM成分进行相位消噪,计算消噪SM成分幅值与参考SM幅值之间的相关系数ck(k=1,...,K);在获得的K个相关系数中,找到最大相关系数ckmax对应的则此时的即为检测出的有效体素精确相位范围具体实现步骤如下:第一步,输入某一个由静息态复数fMRI数据经过ICA分离得到的含噪SM成分s′i,1≤i≤N,N为ICA分离的独立成分个数;第二步,采用专利201410189199.7(林秋华,于谋川,龚晓峰,丛丰裕,一种对复数fMRI数据的ICA估计成分进行相位校正的方法)中的方法对s′i进行相位校正,得到无相位模糊的SM成分si;第三步,计算si的相位图像si,phase,令si,phase(l)表示si第l个体素的相位值,l=1,...,L,L为脑内体素总数,si,phase(l)的取值范围为(-π,π];第四步,根据s′i的先验信息,构建与s′i最为相关的参考SM,仅包含幅值数据,记为s′i,ref;构建方法可选用以下两种方法之一:(1)直接利用现有成果,例如文献“S.M.Smith,P.T.Fox,K.L.Miller,D.C.Glahn,P.M.Fox,C.E.Mackay,etal.,Correspondenceofthebrain’sfunctionalarchitectureduringactivationandrest,ProceedingsoftheNationalAcademyofSciences,vol.106,no.31,pp.13040-13045,August2009”中提供了有关默认网络、视觉、运动等成分的先验SM,可以作为参考SM幅值;(2)利用WFU_PickAtlas软件(详见http://fmri.wfubmc.edu/cms/software)生成参考SM幅值;第五步,设定K值,K≥9,并令k=1;第六步,令所对应的相位范围为[-kπ/2K,kπ/2K];第七步,构建si相位消噪的二进制mask:第八步,用对si进行相位消噪,得到消噪后的SM成分其中“·”表示点乘;第九步,计算的幅值与参考SM幅值s′i,ref的相关系数ck:其中“corr”表示相关运算,“|·|”表示取模值;第十步,判断k是否小于K,若是,则k=k+1,并跳转到第六步;若否,则跳转到第十一步;第十一步,寻找K个相关系数ck(k=1,...,K)的最大值ckmax,获得ckmax对应的则该所确定的相位范围即为用于si消噪的有效体素精确相位范围第十二步,利用第七步和第八步,重新求得利用精确相位范围消噪后的SM成分第十三步,去掉所有体素中幅值小于0.5的体素,输出最终消噪的SM成分本专利技术所达到的效果和益处是,通过利用本专利技术检测的有效体素精确相位范围,对ICA从静息态复数fMRI数据中所分离的SM成分进行相位消噪,可大大提升SM成分所包含的脑功能信息。例如,对于默认网络成分,本专利技术检测的相位范围为[-π/16,π/16]。利用该相位范围消噪后的默认网络成分所包含的有效体素数是仅仅利用幅值fMRI数据所分离SM(采用了最为有效的Infomax算法)有效体素数的6倍。因此,本专利技术保障了在ICA中利用完备的静息态复数fMRI数据,进而提取更多连续且有意义的激活区域,为基于静息态复数fMRI数据的脑功能研究和脑疾病诊断提供了更好的技术支持。此外,本专利技术也适于在任务态复数fMRI数据的ICA分析中检测更为精确的相位消噪范围。附图说明图1是对某一含噪SM成分进行ICA后处理消噪的具体步骤。具体实施方式下面结合技术方案和附图,详细叙述本专利技术的一个具体实施例。假设现有ICA从单被试静息态复数fMRI数据中分离得到的含噪默认网络SM成分,记为s′1,其脑内体素总数L=59610。对该默认网络SM成分进行精确相位范围检测及ICA后处理消噪的具体步骤如附图所示:第一本文档来自技高网
...
对静息态复数fMRI数据进行ICA后处理消噪的相位精确范围检测方法

【技术保护点】
一种对静息态复数fMRI数据进行ICA后处理消噪的相位精确范围检测方法,对于某一ICA分离的含噪SM成分,根据其先验信息构建该SM成分的参考SM幅值;设有效体素的精确相位范围为

【技术特征摘要】
1.一种对静息态复数fMRI数据进行ICA后处理消噪的相位精确范围检测方法,对于某一ICA分离的含噪SM成分,根据其先验信息构建该SM成分的参考SM幅值;设有效体素的精确相位范围为在区间(0,π/2]范围内等间距地取K个值,记为k=1,...,K,得到K个待检测的有效体素相位范围对于每个利用对SM成分进行相位消噪,计算消噪SM成分幅值与参考SM幅值之间的相关系数ck(k=1,...,K);在获得的K个相关系数中,找到最大相关系数ckmax对应的则此时的即为检测出的有效体素精确相位范围其特征在于以下步骤:第一步,输入某一个由静息态复数fMRI数据经过ICA分离得到的含噪SM成分s′i,1≤i≤N,N为ICA分离的独立成分个数;第二步,对s′i进行相位校正,得到无相位模糊的SM成分si;第三步,计算si的相位图像si,phase,令si,phase(l)表示si第l个体素的相位值,l=1,...,L,L为脑内体素总数,si,phase(l)的取值范围为(-π,π];第四步,根据s′i的先验信息,构建与s′i最为相关的参考SM,仅包含幅值数据,记为s′i,ref;构建方法选用以下两种方法之一:(1)直接利用现有成...

【专利技术属性】
技术研发人员:林秋华邝利丹龚晓峰丛丰裕
申请(专利权)人:大连理工大学
类型:发明
国别省市:辽宁,21

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1