基于声-超声的聚丙烯生产管道粉末粘附状态的检测方法技术

技术编号:15636323 阅读:125 留言:0更新日期:2017-06-14 20:10
本发明专利技术公开了一种基于声‑超声的聚丙烯生产管道粉末粘附状态的检测方法,用于现场监测聚丙烯生产管道的粉末颗粒流通状态及运行安全。设计了聚丙烯生产管道粉末粘附状态的声‑超声检测系统,在管道上布置一个发射换能器两个接收换能器,通过激励和接收声‑超声信号,采用应力波因子评价模型,获取粉末粘附严重程度与声‑超声信号间的关系,实现粉末粘附状态的在线检测。本发明专利技术的技术效果在于,实现了聚丙烯生产管道粉末粘附状态的快速检测和评估,保障了聚丙烯生产管道传输效率和安全。

【技术实现步骤摘要】
基于声-超声的聚丙烯生产管道粉末粘附状态的检测方法
本专利技术涉及一种粉末粘附状态的检测方法,特别涉及聚丙烯生产管道中的粉末粘附状态的无损定量评价方法。
技术介绍
聚丙烯因具有密度小、成型加工性能好、耐热性好、无毒无味等优点而被广泛应用,但在其生产过程中,细小粉末易粘附在管道内壁形成粘附层或结块,极大影响粉末运输效率,且容易造成管道堵塞、粉末爆炸等运行安全问题,因此对聚丙烯粉末生产输送管道中的粉末粘附状态进行检测十分重要。超声波检测是无损检测中的一种重要手段,已广泛应用于各领域工业产品检测,它能在不破坏工件结构及性能的前提下实现缺陷检测。其中,超声脉冲反射回波法在管壁沉积、堵塞检测中得到广泛应用,申请公布号US6470749,公布日为2002年10月29日的专利文献公开了一种管壁沉积物检测方法,通过超声脉冲回波法,基于回波信号的多普勒频移可确定沉积物外表面与管道内壁的距离,实现沉积物的有效测量,但该方法的检测效果易受管道结构及反射介质等的影响,检测效率及实时性较差,难以检测长距离管道。为提高检测稳定性和效率,申请公布号US7607825,公布日为2009年10月27日的专利文献公开了一种锅炉沉积物检测方法,通过红外热成像检测方法,基于炉壁内表面的温度变化趋势可确定内壁沉积物的坐标,根据温度比较还可确定沉积物的厚度,但仍需改善对温差不大时的细节分辨能力,且仪器成本较高。申请公布号EP057796,公布日为2014年10月23日的专利文献公开了一种液体承载系统内部沉积物检测装置,通过脉冲回波法和双重装置检测,该装置可实现系统内部沉积物的高精度检测,但该系统需在承载系统内部布置多个传感器,检测成本高。2002年,Sokolkin等在论文《UseofAcousticEmissioninTestingBottomsofWeldedVerticalTanksforOilandOilDerivatives》中提到,基于物理声学有限公司的声发射测试报告以及OAOSN-MNG的现场实验,开发了一种用于油罐沉积物的声发射检测技术,该技术可用于实现油罐底部条件的快速评估,但当前仍缺乏一种权威的方法来描述和解释其测试结果。声-超声技术兼具普通超声检测及声发射检测技术优点,是一项可通过自主激励使构件表面及内部产生应力波,并实现构件整体性能评价的无损检测技术。与其他方法相比,声-超声检测对被测对象结构等因素不敏感,无需加载工件,检测效率高,且能够通过应力波因子等实现构件性能变化的定量评价。本专利技术提出了一种基于声-超声的聚丙烯生产管道粉末粘附状态的检测方法,通过应力波因子模型实现了粉末粘附状态的量化评估,并实现工业现场中聚丙烯生产管道粉末粘附状态的在线监测。
技术实现思路
本专利技术目的在于提出一种可用于量化评估聚丙烯生产管道粉末粘附状态的检测方法。本专利技术的技术方案是,一种基于声-超声的聚丙烯生产管道粉末粘附状态的检测方法,利用声-超声信号无损探测聚丙烯生产管道内部粉末粘附状态,最终实现粉末粘附状态的量化评估,特征在于:1.设计了声-超声检测系统,无需考虑管道结构影响,实现长距离聚丙烯生产管道的粉末粘附状态的评估,提高检测效率。2.搭建声-超声检测系统,采用一发射两接收的传感器布置方式,对结果进行实时对比验证并减少振动噪声对结果的影响,从而提升检测精度。3.构建应力波因子模型,分析并获取粉末粘附等级与应力波因子评价模型的关系,从而实现了粉末粘附状态的在线量化评估。所述检测方法具体包括以下步骤:步骤一:搭建聚丙烯生产管道粉末粘附状态的声-超声检测系统。聚丙烯生产管道粉末粘附状态声-超声检测系统由工控机、任意信号发生器、发射换能器、接收换能器1、接收换能器2、前置放大器1、前置放大器2和信号采集卡组成,接收换能器1和接收换能器2与发射换能器的距离相等,接收换能器1位于待测粉末粘附状态的管道一侧,用于接收检测信号;接收换能器2位于确知无粉末粘附的管道一侧,用于接收参考信号。检测时,工控机与任意信号发生器相连接,通过程序控制任意信号发生器激励发射换能器产生加汉宁窗多周期正弦信号;接收换能器通过前置放大器与信号采集卡相连接,将采集的检测信号和参考信号以相同增益放大后存储到工控机中。步骤二:激励和接收声-超声信号。采用一发射两接收方式,利用任意信号发生器激励位于管道中间位置的发射换能器产生加汉宁窗多周期正弦信号,在待测粉末粘附状态一侧设置的接收换能器1接收的声-超声信号作为检测信号,在确知无粉末粘附一侧设置的接收换能器2接收的声-超声信号作为参考信号,对检测结果进行实时对比验证。步骤三:构建聚丙烯生产管道粉末粘附状态的应力波因子评价模型,利用检测信号和参考信号的幅值、能量及功率谱密度等特征因子的相对衰减率进行加权相加,建立应力波因子评价模型SWF=g1*SV+g2*SP+g3*SE+g4*SF,其中SV为峰值电压相对衰减率,SP为峰峰值电压相对衰减率,SE为能量值相对衰减率,SF为功率谱密度相对衰减率,g1、g2、g3和g4为权重系数,信号采样次数为N,将每次采样获得的SWF进行均值处理,获得平均应力波因子步骤四:确立不同粉末粘附等级下的取值范围,根据粉末粘附严重程度将已知管道粉末粘附状态划分等级,并根据已知管道粉末粘附状态的检测信号和参考信号,获得不同粉末粘附等级下的阈值T(n)。步骤五:实现聚丙烯生产管道粉末粘附状态的在线监测及报警,根据聚丙烯管道材料参数、声-超声信号在管道中的传播特性和实际检测结果确定不影响管道正常运行的最大粉末粘附等级n级为报警等级,当监测到时,即发出报警信号,提示粉末粘附状态已达到n级。所述一种基于声-超声的聚丙烯生产管道粉末粘附状态的检测方法,所述步骤三中建立应力波因子评价模型的过程为:根据所述步骤一及步骤二获取管道粉末粘附状态检测的检测信号和参考信号,计算获得检测信号和参考信号的电压幅值V和V0、峰值电压Vmax和Vmax0、峰谷电压Vmin和Vmin0,并通过傅里叶变换获得检测信号和参考信号的频谱幅值A和A0,然后计算信号的峰值电压、峰峰值电压、能量及功率谱密度对应相对衰减率分别为和加入权重系数g1、g2、g3和g4,权重系数根据SV、SP、SE、SF与粉末粘附等级之间的相关性来确定,建立应力波因子评价模型SWF=g1*SV+g2*SP+g3*SE+g4*SF。所述一种基于声-超声的聚丙烯生产管道粉末粘附状态的检测方法,所述步骤四中获取不同粉末粘附等级下的阈值T(n)的过程为:将已知管道粉末粘附状态的严重程度量化为1—k个等级,并根据所述权利要求1的步骤一及步骤二获取1—k个等级管道粉末粘附状态时的检测信号和参考信号,然后计算得出以此获得与不同粉末粘附等级之间的关系,从而确定各等级时的阈值T(n),即当时,粉末粘附状态为n-1级。本专利技术的技术效果在于,通过搭建聚丙烯生产管道粉末粘附状态的声-超声检测系统,采用一发射两接收的对比形式,保证不同工况下检测结果的可靠性,提高检测效率;通过声-超声技术,采用应力波因子评价模型,分析并获取粉末粘附等级与应力波因子评价模型的关系,实现了粉末粘附状态的在线量化评估及危险报警,从而提高了管道检测效率,减少对管道正常运输的影响。下面结合附图对本专利技术作进一步说明。附图说明附图1本文档来自技高网
...
基于声-超声的聚丙烯生产管道粉末粘附状态的检测方法

【技术保护点】
一种基于声‑超声的聚丙烯生产管道粉末粘附状态的检测方法,包括以下步骤:步骤一:搭建聚丙烯生产管道粉末粘附的声‑超声检测系统,所述检测系统包括工控机(1)、任意信号发生器(2)、发射换能器(3)、接收换能器1(4)、接收换能器2(5)、前置放大器1(6)、前置放大器2(7)和信号采集卡(8),接收换能器1(4)和接收换能器2(5)与发射换能器(3)的距离相等,接收换能器1(4)位于待测粉末粘附状态的管道一侧;接收换能器2(5)位于确知无粉末粘附的管道一侧;步骤二:激励和接收声‑超声信号,采用一发射两接收方式,利用任意信号发生器(2)激励位于管道中间位置的发射换能器(3)产生加汉宁窗多周期正弦信号,在待测粉末粘附状态一侧设置的接收换能器1(4)接收的声‑超声信号作为检测信号,在确知无粉末粘附层的另一侧设置的接收换能器2(5)接收的声‑超声信号作为参考信号;步骤三:构建聚丙烯生产管道粉末粘附状态的应力波因子评价模型,利用检测信号和参考信号的幅值、能量及功率谱密度等特征因子的相对衰减率进行加权相加,建立应力波因子评价模型SWF=g

【技术特征摘要】
1.一种基于声-超声的聚丙烯生产管道粉末粘附状态的检测方法,包括以下步骤:步骤一:搭建聚丙烯生产管道粉末粘附的声-超声检测系统,所述检测系统包括工控机(1)、任意信号发生器(2)、发射换能器(3)、接收换能器1(4)、接收换能器2(5)、前置放大器1(6)、前置放大器2(7)和信号采集卡(8),接收换能器1(4)和接收换能器2(5)与发射换能器(3)的距离相等,接收换能器1(4)位于待测粉末粘附状态的管道一侧;接收换能器2(5)位于确知无粉末粘附的管道一侧;步骤二:激励和接收声-超声信号,采用一发射两接收方式,利用任意信号发生器(2)激励位于管道中间位置的发射换能器(3)产生加汉宁窗多周期正弦信号,在待测粉末粘附状态一侧设置的接收换能器1(4)接收的声-超声信号作为检测信号,在确知无粉末粘附层的另一侧设置的接收换能器2(5)接收的声-超声信号作为参考信号;步骤三:构建聚丙烯生产管道粉末粘附状态的应力波因子评价模型,利用检测信号和参考信号的幅值、能量及功率谱密度等特征因子的相对衰减率进行加权相加,建立应力波因子评价模型SWF=g1*SV+g2*SP+g3*SE+g4*SF,其中SV为峰值电压相对衰减率,SP为峰峰值电压相对衰减率,SE为能量值相对衰减率,SF为功率谱密度相对衰减率,g1、g2、g3和g4为权重系数,信号采样次数为N,将每次采样获得的SWF进行均值处理,获得平均应力波因子步骤四:确立不同粉末粘附等级下的取值范围,将已知...

【专利技术属性】
技术研发人员:胡宏伟叶城保陈卫军周佳欣张婕陈小敏王向红
申请(专利权)人:长沙理工大学
类型:发明
国别省市:湖南,43

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1