基于计算鬼成像的高分辨率微视觉系统技术方案

技术编号:15567901 阅读:252 留言:0更新日期:2017-06-10 02:01
本实用新型专利技术公开基于计算鬼成像的高分辨率微视觉系统,系统在光路上依次包括激光光源、第一光阑、激光扩束镜、准直透镜、第二光阑、起偏器、空间光调制器、检偏器、第三光阑、反光镜、分束镜、会聚透镜、CCD相机;还包括位于分束镜另一光路上的精密定位载物台;精密定位载物台与计算机连接,计算机还分别与空间光调制器与CCD相机连接,计算机通过计算鬼成像技术获取高分辨率图像。本实用新型专利技术结构简单紧凑,由于采用光场强度关联测量恢复物体信息,消除了经典光学系统成像畸变的问题,可以获得高准确度和对比度的图像。本实用新型专利技术非常有利于微视觉系统的设计及鬼成像技术的研究。

【技术实现步骤摘要】
基于计算鬼成像的高分辨率微视觉系统
本技术涉及计算机微视觉领域,具体涉及一种基于计算鬼成像的高分辨率微视觉系统。
技术介绍
计算机微视觉系统是集光学显微镜、视觉成像和计算机视觉技术为一体的可实现实时、可视化检测的测量平台。微视觉系统的构成主要包括光学显微镜、光源、摄像机、图像采集卡、精密定位载物台等硬件以及图像处理软件。其原理是通过显微镜和成像设备(CCD摄像机、图像采集卡等)把被测对象的图像采集到计算机,接着运用图像处理技术、计算机视觉或人工智能等技术对采集到的图像进行处理、识别等操作,从而完成微视觉系统所要求的任务。这种微视觉系统在微观测量、成像等领域有着广泛的应用。随着科技的不断发展,人们对微观世界的研究已经由微米级、亚微米级进入到纳米级阶段,光学分辨极限的限制逐渐凸现出来,极大地限制了计算机微视觉技术的进一步应用。虽然目前已有多种超分辨成像技术被实现,但是这些方法的成功实施往往需要特殊的条件及硬件支持,使用范围受到一定的限制。面对这些问题,各种新的解决方案被提出来。一方面,直接发展新的显微成像技术,例如借助短波长电子的扫描电子显微镜,原子力显微镜,荧光显微镜等等;另一方面,研究可以突破衍射极限的光学显微成像方法,如量子成像,热光鬼成像,结构光成像技术等等。鬼成像(ghostimaging),是一种利用双光子符合探测恢复待测物体空间信息的新型成像技术。传统的光学是基于光场的一阶关联(强度与位相)获得信息,而鬼成像利用的光场的二阶或者高阶关联,并结合符合测量技术获取成像信息。鬼成像可以实现非定域成像,无透镜成像,抗大气湍流成像等成像方案,引起了人们的广泛关注。经典成像系统的分辨率受到光学衍射极限的制约,而鬼成像技术具有超越经典分辨率极限的能力,尤其是近年来出现的计算鬼成像,对鬼成像技术的实用化有巨大的推进作用。因此将计算鬼成像技术应用到微视觉系统具有十分重要的意义。
技术实现思路
针对经典微视觉系统的分辨率受到光学衍射极限制约的问题,本技术提供了一种基于计算鬼成像的高分辨率微视觉系统。该系统结构紧凑,安装方便,抗干扰能力强,结合计算鬼成像技术,能够突破经典光学系统的衍射极限,使系统分辨率不受透镜孔径尺寸限制,成像分辨率和对比度高。本技术的目的通过如下技术方案实现。一种基于计算鬼成像的高分辨率微视觉系统,在光路上依次包括激光光源、第一光阑、激光扩束镜、准直透镜、第二光阑、起偏器、空间光调制器、检偏器、第三光阑、反光镜、分束镜、会聚透镜、CCD相机;还包括位于分束镜另一光路上的精密定位载物台;精密定位载物台与计算机连接,计算机还分别与空间光调制器与CCD相机连接,计算机通过计算鬼成像技术获取高分辨率图像。所述的利用计算鬼成像技术获取图像,其实现步骤如下:1.利用空间光调制器对激光光强进行调制。通过计算机生成K张M×M的随机散斑图,散斑图的中心是一个N×N有效散斑区域,且N≤M,有效散斑区域的周围区域为白色,然后将散斑图转换为全息图并存储到硬盘。取一张全息图加载到空间光调制器上,并调节激光源、光阑、激光扩束镜以及准直透镜,使激光扩束镜产生的光斑可以完全覆盖加载到空间光调制器上有效全息区域(对应散斑图上的有效散斑区域)。通过不断的加载新的全息图,可以实现对激光光强的调制。2.利用CCD相机采集物体表面的光强强度变化。调节精密控制载物台,确保被测物体的目标区域完全被激光束覆盖。接着调整会聚透镜以及CCD相机的位置,使CCD相机能够接收到被测物体目标区域的反射光。然后通过计算机控制空间光调制器与CCD相机同步工作,即空间光调制器每加载一副全息图,CCD相机就立即拍下被测物体目标区域的光强变化,并将对应的图片保存。将得到的图片的所有像素的灰度值累加,记为Bi,i表示测量的次数,由此可得到测试光路的光强涨落信息。3.通过计算机模拟获取参考光路光强涨落信息。激光束未经空间光调制器调制时,在空间光调制器平面处的场强为Es(xs,ys);激光束经过空间光调制器调制后,其场强为Eo(x,y)=Es(xs,ys)Em(x,y)上式中Em(x,y)表示用于调制的场强。激光束经过空间光调制器调制后,在参考光路CCD相机处的场强为上式中(x,y),(xs,ys)分别表示CCD相机平面、空间光调制器平面的直角坐标;Dr表示CCD相机到空间光调制器的距离;λ为激光的波长;Eo(x,y)表示激光束经空间光调制器调制后的场强。由上式可以得到CCD相机处的光强为Ir(x,y)=Er(x,y)Er*(x,y)4.进行强度关联运算,获取被测物体图像。将2和3中得到的测试光路和参考光路的光强涨落信息进行关联,即上式中N表示测量次数。对G(x,y)进行归一化,即Gfinal(x,y)=G(x,y)/max(G(x,y))max(G(x,y))表示取G(x,y)中的最大值。由上式可以得到被测物体目标区域的图像信息。采用上述技术方案后,可以设计出一个结构紧凑、安装方便的微视觉系统。结合计算鬼成像技术,能够突破经典光学系统的衍射极限,获得高分辨率和对比度的图像。与现有技术相比,本技术的有益效果及优点:本技术设计出一个结构简单、安装方便、易于操作的微视觉系统。通过采用基于光场强度关联测量恢复物体信息的鬼成像技术,可以克服经典光学系统普遍存在的衍射极限问题,实现高分辨率成像。同时,由于采用计算鬼成像技术,相比于传统的鬼成像技术,系统的结构得到了简化,实用性更强。另外,由于采用光场强度关联测量恢复物体信息,消除了经典光学系统成像畸变的问题,可以获得高准确度和对比度的图像。本技术非常有利于微视觉系统的设计及鬼成像技术的研究。附图说明图1为实施方式中微视觉系统的组成示意图。图2为实施方式中计算机模拟散斑的示意图。图3为实施方式中激光束与散斑位置关系的示意图。具体实施方式下面结合附图和实施例对本技术的内容进行详细的描述,但本技术的实际应用形式并不仅限于下述的实施例,本技术的关键在于提高高分辨率微视觉系统,以下涉及的计算或软件部分是本领域技术人员可以根据实际情况编程实现的。如图1所示,本技术提供了一种基于计算鬼成像的高分辨率微视觉系统,该系统由激光光源101、光阑(102,105,109)、激光扩束镜103、准直透镜104、起偏器106、空间光调制器107、检偏器108、反光镜110、会聚透镜111、CCD相机112、分束镜113、计算机114、精密定位载物台115组成。所述的系统利用计算鬼成像技术获取高分辨率图像。所述的利用计算鬼成像技术获取图像,其实现步骤如下:1.利用空间光调制器对激光光强进行调制。通过计算机生成8000张900×900的随机散斑图,散斑图的中心是一个360×360有效散斑区域201,有效散斑区域的周围区域202为白色,如图2所示。然后将散斑图转换为全息图并存储到硬盘。取一张全息图加载到空间光调制器107上,并调节激光源101、光阑(102,105)、激光扩束镜103以及准直透镜104,使激光扩束镜产生的光斑301可以完全覆盖加载到空间光调制器上有效全息区域(对应散斑图上的有效散斑区域),如图3所示。通过不断的加载新的全息图,可以实现对激光光强的调制。2.利用CCD相机采集物体表面的光强强度本文档来自技高网
...
基于计算鬼成像的高分辨率微视觉系统

【技术保护点】
一种基于计算鬼成像的高分辨率微视觉系统,其特征是在光路上依次包括激光光源、第一光阑、激光扩束镜、准直透镜、第二光阑、起偏器、空间光调制器、检偏器、第三光阑、反光镜、分束镜、会聚透镜、CCD相机;还包括位于分束镜另一光路上的精密定位载物台。

【技术特征摘要】
1.一种基于计算鬼成像的高分辨率微视觉系统,其特征是在光路上依次包括激光光源、第一光阑、激光扩束镜、准直透镜、第二光阑、起偏器、空间光调制器、检偏器、第三光阑、反光镜、分束镜、会聚透镜、CCD相机;还包括位于分束镜另一光...

【专利技术属性】
技术研发人员:张宪民吴衡李海甘金强詹镇辉何振亚
申请(专利权)人:华南理工大学
类型:新型
国别省市:广东,44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1