磁偏转电子束蒸发源制造技术

技术编号:15425839 阅读:206 留言:0更新日期:2017-05-25 14:50
本发明专利技术公开了一种磁偏转电子束蒸发源,包括:电子束发生机构、磁偏转组件、水冷坩埚机构、直线换位机构和工作电路;电子束发生机构为本发明专利技术核心机构,主要包括灯丝、灯丝座、陶瓷片、陶瓷座、支撑块、陶瓷柱、阴极屏蔽罩等;采用灯丝加热的方式发射热电子,热电子经阴极和阳极之间的电场加速后飞往阳极,为了提高蒸发的速率,采用了一种阴极屏蔽罩,此阴极屏蔽罩不仅可以屏蔽下方永久磁铁产生的磁场对灯丝发射电子的干扰,而且还能作为控制极来调整束斑的大小;冷却构造是双层水冷,冷却外筒内的冷却内筒将冷却水直接送至无氧铜坩埚;待蒸发膜材位于无氧铜坩埚内衬内,采用的坩埚内衬可以使整个熔池的温度分布趋于均匀。

【技术实现步骤摘要】
磁偏转电子束蒸发源
本专利技术涉及超高真空设备领域,特别涉及一种磁偏转电子束蒸发源。
技术介绍
在半导体集成电路,传感器和太阳能电池板的生产过程中,很多结构都需要真空镀膜技术来生成。因此真空镀膜直接决定了半导体和太阳能电池板等产品的质量。真空镀膜的研究与应用都离不开其产生设备,因此蒸发源的研发具有重要意义。目前国内外的主要真空镀膜技术有真空蒸发镀膜、真空溅射镀膜、真空离子镀膜,其中应用最多的是真空蒸发镀膜。真空蒸发镀膜技术,即在高真空或超高真空的腔室中通过蒸发源加热使膜材(如金属或化合物)蒸发。蒸发的粒子从膜材表面逸出,在蒸发分子的平均自由程大于蒸发源与基片间的线尺寸的情况下,可直接到达基片表面上并凝结生成膜。影响蒸发镀膜性能的主要因素是蒸发速率、残余气体和蒸发温度。蒸发速率直接决定了薄膜的质量,相应的膜材对应相应的蒸发速率和沉积速率,蒸发镀膜与其他镀膜方法对比有更高的沉积率,可以蒸镀大多数的金属和化合物膜。在真空蒸发镀膜中,常见的蒸发源有四种类型:(1)电阻加热蒸发源,它是利用对发热体直接通电,利用电流通过后产生的焦耳热来熔化金属膜材实现蒸发。(2)感应加热蒸发源,它是用高频感应电流加热坩埚和感应物质。(3)激光加热蒸发源,其利用高效率的激光束作为加热源直接对膜材进行加热。(4)电子束加热蒸发源,其原理是基于电子在电场的作用下,所获得的动能转化为加热的热能,从而实现对膜材的加热,蒸发,凝结成所需薄膜。它主要由提供电子的阴极,阳极,聚束极和磁场组成。电子束加热源的特点是能量集中,能使膜材表面迅速获得极高的温度,膜材蒸发速率和薄膜沉积速率较高,可通水冷却,可调控温度范围大。目前的电子束加热蒸发源大都是利用高温电子轰击膜材靠巨大的能量熔化金属(或化合物)再使其蒸发并镀膜。与之而来的是充当阴极的灯丝发射出来的电子极易直接入射在基片上,降低了薄膜纯度。同时灯丝也极易被电离出来的正离子轰击和来自坩埚内溅射出来的蒸发物所污染。绝大数的电子束蒸发源都采用磁偏转的方式减少污染,主要有如图一所示三种偏转角度。180°、225°偏转蒸发源灯丝还是会受坩埚内蒸发物污染,效果不佳。由于热电子轰击坩埚内膜材导致坩埚温度急剧升高(可达2000℃~6000℃),传统的冷却机构结构复杂,散热效果不佳,温度控制能力较差,大大影响了薄膜性能。除此之外,目前国内外绝大数的磁偏转蒸发源都是利用通电的磁力线圈产生偏转磁场的,磁力线圈通电发热极易产生杂质电子污染灯丝和薄膜。我国目前没有国产的磁偏转电子束蒸发源。
技术实现思路
本专利技术针对上述技术问题,提出一种能在真空中结构简单的高效率蒸发和沉积的的电子束蒸发源,并且极大地提高所生长的薄膜的纯度的磁偏转电子束蒸发源。为达到以上目的,通过以下技术方案实现的:磁偏转电子束蒸发源,包括:电子束发生机构、磁偏转组件、水冷坩埚机构、直线换位机构和工作电路;所述的电子束发生机构包括:灯丝、灯丝座A、灯丝座B、陶瓷片、陶瓷座、陶瓷座套筒、支撑块、陶瓷柱、陶瓷柱保护罩、阴极屏蔽罩、磁铁套;所述的灯丝以螺钉连接的方式固定在灯丝座A和灯丝座B上;所述的两陶瓷片以螺钉连接的方式固定在灯丝座A的上下两定位孔内,两陶瓷座位于灯丝座A和灯丝座B正下方,以同轴心的形式分别和两灯丝座装配;所述的两陶瓷座套筒与陶瓷座间隙配合并以螺钉的连接的形式与陶瓷座一起固定在所述支撑块上;所述支撑块以螺钉的连接方式固定在磁铁套上,且支撑块设置有具有放气的作用前后两通孔;其中,两个灯丝座、陶瓷座套筒和陶瓷座纵向同轴均预设有螺钉装配通孔,通过贯穿装配的同一根螺钉连接在一起,磁铁套、支撑块和陶瓷座纵向同轴预设有螺钉装配通孔,通过另一根螺钉贯穿装配连接在一起,上述螺钉装配通孔为纵向同轴通孔;所述的阴极屏蔽罩位于两灯丝座和两陶瓷座套筒之间;所述的陶瓷柱以螺钉连接的方式固定在灯丝座A和灯丝座B之间,用以固定并绝缘两灯丝座;所述的陶瓷柱保护罩以螺钉连接的方式固定在陶瓷柱一侧用来保护陶瓷柱;所述的磁偏转组件包括:永久磁铁、轭铁、磁偏转挡片、磁铁固定垫片和非磁性挡片;所述的永久磁铁嵌于上述磁铁套内,并由磁铁固定垫片通过螺钉连接固定在所述的磁铁套上;所述的轭铁本身无磁性,共有四块,分别焊接在水冷坩埚机构的无氧铜坩埚上,经对应位置的永久磁铁磁化后具备磁性两轭铁在电子束发生机构区域构成均匀磁场,对电子起到了偏转270°的作用;所述的磁偏转挡片以螺钉连接的形式固定在所述灯丝座B上方;所述的非磁性挡片受永久磁铁磁力吸附在磁铁外侧;所述的水冷坩埚机构包括:无氧铜坩埚、坩埚后盖、坩埚内衬、水冷内筒、水冷外筒和冷却筒滑块;所述的坩埚后盖通过钎焊的方式焊接在所述无氧铜坩埚上;所述的坩埚内衬形状、大小与无氧铜坩埚槽相近;坩埚内衬的材料为石墨,Mo或Ta;所述水冷内筒一端焊接在无氧铜坩埚上作为进水口,另一端通过螺纹连接的形式和连接接口管连接;所述的水冷外筒一端焊接在无氧铜坩埚上作为出水口;所述的冷却筒滑块与水冷外筒焊接在一起,水冷内筒位于水冷外筒内,冷却水由水冷内筒流入,从水冷外筒流出;所述的直线换位机构包括:压板A、压板B、坩埚底座压板、焊接波纹管、滑轨嵌套、追加工法兰、铜螺母、塑料片、拧把手、铜片、螺纹丝杠、滑轨和滑轨滑块;所述的坩埚底座压板通过螺钉与上述的无氧铜坩埚连接;所述的冷却筒滑块与所述的坩埚底座以螺钉连接的形式固定,并且其上端面和前端面分别与装有滑轨嵌套的压板A和压板B通过螺钉连接,可以实现在压板A的轴向方向的滑动,从而带动无氧铜坩埚一起滑动;所述压板A和压板B通过焊接的方式固定,并且与所述追加工法兰焊接成一体;所述的焊接波纹管一端与冷却筒滑块焊接固定,另一端与追加工法兰焊接固定;以上各部件位于真空内部;所述的铜片与追加工法兰焊接固定;所述的螺纹丝杠一端与上述冷却筒滑块焊接固定,另一端与水冷外筒连接接口连接,螺纹丝杠实际也作为水冷外筒往外排出冷却水;所述铜螺母与螺纹丝杠进行螺纹连接,所述的拧把手套在铜螺母上,并且通过一根细小的螺钉与铜螺母夹紧;所述的塑料片套在拧把手上;所述的滑轨焊接在追加工法兰上;所述的滑轨滑块与滑轨间隙配合,滑轨滑块便可以在滑轨上滑动;即,拧动拧把手带动铜螺母与螺纹丝杠相对转动变旋转运动为直线运动,原本压缩后的焊接波纹管慢慢复原,冷却筒滑块带动着固定的无氧铜坩埚向前移动,达到换位的目的;所述的工作电路由:铜棒、电极法兰、灯丝、灯丝座A、灯丝座B、无氧铜坩埚组成;其中,两铜棒一端分别与灯丝座A和灯丝座B相连,另一端分别与电极法兰预设接口相连;所述灯丝两端分别固定在灯丝座A和灯丝座B的插口处,由外接电源经铜棒、灯丝座给灯丝作为阴极,且通负高压U=3.5kV,无氧铜坩埚作为阳极接地。采用上述技术方案的本专利技术与现有的技术相比,本专利技术具有以下有益效果:1、由于热电子轰击坩埚内膜材时的能量至少3.5KeV,这足以让绝大多数的金属熔化,因此充分可靠的冷却构造极其重要。本专利技术的冷却构造是双层水冷,冷却外筒内的冷却内筒将冷却水直接送至无氧铜坩埚,冷却水穿过无氧铜坩埚带走热量从冷却外筒流出。本专利技术的待蒸发膜材位于无氧铜坩埚内衬内,采用的坩埚内衬可以使整个熔池的温度分布趋于均匀,并且防止无氧铜坩埚的材料污染薄膜。阳极的无氧铜坩埚的温度和冷却水的流量可以实时监控,这样本文档来自技高网
...
磁偏转电子束蒸发源

【技术保护点】
磁偏转电子束蒸发源,其特征在于,包括:电子束发生机构、磁偏转组件、水冷坩埚机构、直线换位机构和工作电路;所述的电子束发生机构包括:灯丝、灯丝座A、灯丝座B、陶瓷片、陶瓷座、陶瓷座套筒、支撑块、陶瓷柱、陶瓷柱保护罩、阴极屏蔽罩、磁铁套;所述的灯丝以螺钉连接的方式固定在灯丝座A和灯丝座B上;所述的两陶瓷片以螺钉连接的方式固定在灯丝座A的上下两定位孔内,两陶瓷座位于灯丝座A和灯丝座B正下方,以同轴心的形式分别和两灯丝座装配;所述的两陶瓷座套筒与陶瓷座间隙配合并以螺钉的连接的形式与陶瓷座一起固定在所述支撑块上;所述支撑块以螺钉的连接方式固定在磁铁套上,且支撑块设置有具有放气的作用前后两通孔;其中,灯丝座、陶瓷座套筒和陶瓷座纵向同轴均预设有螺钉装配通孔,通过同一根螺钉连接在一起,磁铁套、支撑块和陶瓷座纵向同轴预设有螺钉装配通孔,通过另一根螺钉连接在一起;所述的阴极屏蔽罩位于两灯丝座和两陶瓷座套筒之间;所述的陶瓷柱以螺钉连接的方式固定在灯丝座A和灯丝座B之间,用以固定并绝缘两灯丝座;所述的陶瓷柱保护罩以螺钉连接的方式固定在陶瓷柱一侧用来保护陶瓷柱;所述的磁偏转组件包括:永久磁铁、轭铁、磁偏转挡片、磁铁固定垫片和非磁性挡片;所述的永久磁铁嵌于上述磁铁套内,并由磁铁固定垫片通过螺钉连接固定在所述的磁铁套上;所述的轭铁本身无磁性,共有四块,分别焊接在水冷坩埚机构的无氧铜坩埚上,经对应位置的永久磁铁磁化后具备磁性两轭铁在电子束发生机构区域构成均匀磁场,对电子起到了偏转270°的作用;所述的磁偏转挡片以螺钉连接的形式固定在所述灯丝座B上方;所述的非磁性挡片受永久磁铁磁力吸附在磁铁外侧;所述的水冷坩埚机构包括:无氧铜坩埚、坩埚后盖、坩埚内衬、水冷内筒、水冷外筒、冷却筒滑块和连接接口管;所述的坩埚后盖通过钎焊的方式焊接在所述无氧铜坩埚上;所述的坩埚内衬形状、大小与无氧铜坩埚槽相近;坩埚内衬的材料为石墨,Mo或Ta;所述水冷内筒一端焊接在无氧铜坩埚上作为进水口,另一端通过螺纹连接的形式和连接接口连接;所述的水冷外筒一端焊接在无氧铜坩埚上作为出水口;所述的冷却筒滑块与水冷外筒焊接在一起,水冷内筒位于水冷外筒内,冷却水由水冷内筒流入,从水冷外筒流出;所述的直线换位机构包括:无氧铜坩埚、冷却筒滑块、压板A、压板B、坩埚底座压板、焊接波纹管、滑轨嵌套、追加工法兰、铜螺母、塑料片、拧把手、铜片、螺纹丝杠、滑轨和滑轨滑块;所述的坩埚底座压板通过螺钉与上述的无氧铜坩埚连接;所述的冷却筒滑块与所述的坩埚底座以螺钉连接的形式固定,并且其上端面和前端面分别与装有滑轨嵌套的压板A和压板B通过螺钉连接,可以实现在压板A的轴向方向的滑动,从而带动无氧铜坩埚一起滑动;所述压板A和压板B通过焊接的方式固定,并且与所述追加工法兰焊接成一体;所述的焊接波纹管一端与冷却筒滑块焊接固定,另一端与追加工法兰焊接固定;以上各部件位于真空内部;所述的铜片与追加工法兰焊接固定;所述的螺纹丝杠一端与上述冷却筒滑块焊接固定,另一端与水冷外筒连接接口连接,螺纹丝杠实际也作为水冷外筒往外排出冷却水;所述铜螺母与螺纹丝杠进行螺纹连接,所述的拧把手套在铜螺母上,并且通过一根细小的螺钉与铜螺母夹紧;所述的塑料片套在拧把手上;所述的滑轨焊接在追加工法兰上;所述的滑轨滑块与滑轨间隙配合,滑轨滑块便可以在滑轨上滑动;即,拧动拧把手带动铜螺母与螺杆转动变旋转运动为直线运动,原本压缩后的波纹管慢慢复原,冷却筒滑块带动着固定的无氧铜坩埚向前移动,达到换位的目的;所述的工作电路由:铜棒、电极法兰、灯丝、灯丝座A、灯丝座B、无氧铜坩埚组成;其中,两铜棒一端分别与灯丝座A和灯丝座B相连,另一端分别与电极法兰预设接口相连;所述灯丝两端分别固定在灯丝座A和灯丝座B的插口处,由外接电源经铜棒、灯丝座给灯丝作为阴极,且通负高压U=3.5kV,无氧铜坩埚作为阳极接地。...

【技术特征摘要】
1.磁偏转电子束蒸发源,其特征在于,包括:电子束发生机构、磁偏转组件、水冷坩埚机构、直线换位机构和工作电路;所述的电子束发生机构包括:灯丝、灯丝座A、灯丝座B、陶瓷片、陶瓷座、陶瓷座套筒、支撑块、陶瓷柱、陶瓷柱保护罩、阴极屏蔽罩、磁铁套;所述的灯丝以螺钉连接的方式固定在灯丝座A和灯丝座B上;所述的两陶瓷片以螺钉连接的方式固定在灯丝座A的上下两定位孔内,两陶瓷座位于灯丝座A和灯丝座B正下方,以同轴心的形式分别和两灯丝座装配;所述的两陶瓷座套筒与陶瓷座间隙配合并以螺钉的连接的形式与陶瓷座一起固定在所述支撑块上;所述支撑块以螺钉的连接方式固定在磁铁套上,且支撑块设置有具有放气的作用前后两通孔;其中,灯丝座、陶瓷座套筒和陶瓷座纵向同轴均预设有螺钉装配通孔,通过同一根螺钉连接在一起,磁铁套、支撑块和陶瓷座纵向同轴预设有螺钉装配通孔,通过另一根螺钉连接在一起;所述的阴极屏蔽罩位于两灯丝座和两陶瓷座套筒之间;所述的陶瓷柱以螺钉连接的方式固定在灯丝座A和灯丝座B之间,用以固定并绝缘两灯丝座;所述的陶瓷柱保护罩以螺钉连接的方式固定在陶瓷柱一侧用来保护陶瓷柱;所述的磁偏转组件包括:永久磁铁、轭铁、磁偏转挡片、磁铁固定垫片和非磁性挡片;所述的永久磁铁嵌于上述磁铁套内,并由磁铁固定垫片通过螺钉连接固定在所述的磁铁套上;所述的轭铁本身无磁性,共有四块,分别焊接在水冷坩埚机构的无氧铜坩埚上,经对应位置的永久磁铁磁化后具备磁性两轭铁在电子束发生机构区域构成均匀磁场,对电子起到了偏转270°的作用;所述的磁偏转挡片以螺钉连接的形式固定在所述灯丝座B上方;所述的非磁性挡片受永久磁铁磁力吸附在磁铁外侧;所述的水冷坩埚机构包括:无氧铜坩埚、坩埚后盖、坩埚内衬、水冷内筒、水冷外筒、冷却筒滑块和连接接口管;所述的坩埚后盖通过钎焊的方式焊接在所述无氧铜坩埚上;所述的坩埚内衬形状、大小与无氧铜坩埚槽相近;坩埚内衬的材料为石墨,...

【专利技术属性】
技术研发人员:郭方准陈欣
申请(专利权)人:大连交通大学
类型:发明
国别省市:辽宁,21

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1