一种LED外延片的制备方法技术

技术编号:15332550 阅读:117 留言:0更新日期:2017-05-16 20:24
本发明专利技术公开了一种LED外延片的制备方法,该方法可以进一步减少发光面积损失,增加补充层提高量子阱的生长质量,提高反向电压,降低器件内部漏电的同时,还利用In组分渐变的斜阱层,改变阱的禁带宽度,以俘获更多的电子和空穴,增大了电子与空穴的接触面积,提高发光面积,降低电子的运行速度,增大与空穴的接触的有效电子数。

Method for preparing LED epitaxial slice

The invention discloses a LED epitaxial wafer preparation method, the method can further reduce the luminous area loss, added layer to improve the growth quality of quantum well, improve the reverse voltage, reduce internal leakage devices at the same time, also by the inclined well layer In graded composition, change the band gap trap to capture more. The electrons and holes, increasing the contact area of electrons and holes, improve the luminous area, reduce the operating speed of the electronic, increase the effective number of electrons and holes in contact.

【技术实现步骤摘要】
一种LED外延片的制备方法所属
本专利技术涉及LED的制备方法,具体涉及一种LED外延片的制备方法。
技术介绍
近年来,被誉为“绿色照明”的发光二极管(LightEmittingDiode,LED)照明技术发展迅猛。与传统照明光源相比,白光发光二极管不仅功耗低,使用寿命长,尺寸小,绿色环保,更具有调制性能好,响应灵敏度高等优点。白光发光二极管一方面具有发射功率高、对人眼安全等特点;另一方面,具有反应速度快、调制性好,无电磁干扰、无需申请无线电频谱等优点。发光二极管核心部分是由P型半导体和N型半导体组成的芯片,在P型半导体和N型半导体之间有一个过渡层,称为PN结。在某些半导体材料的PN结中,注入的少数载流子与多数载流子复合时会把多余的能量以光的形式释放出来,从而把电能直接转换为光能。GaN基材料属于直接带隙半导体,并且其带隙从1.8~6.2V连续可调,是生产高亮度蓝光、绿光和白光LED的最常用材料。然而c方向生长的铝铟镓氮材料中存在很强的极化电场,该电场造成量子阱能带倾斜,使电子和空穴在空间上分离,降低了复合发光效率。而且能带倾斜产生的势垒尖峰会阻挡空穴的输运,加之空穴有效质量很大,使空穴在各个量子阱中分布极不均匀。发光二极管是采用外延生长的方式生成的一种外延结构,该外延结构主要由衬底、提供电子的N型层、提供空穴的P型层以及复合区的有源层组成,主要应用于照明、交通信号灯、电视、手机等的背光源,背光源中的蓝、绿、白光主要是采用金属有机化学气相沉积法将氮化镓材料沉积到蓝宝石衬底上形成的。在传统的氮化镓基二极管外延片结构中,贯穿整个P~N结的位错为造成二极管性能降低的主要因素之一,此类位错会造成内量子效率降低、反向漏电、抗静电击穿能力较差。电子阻挡层PAlGaN在LED外延中是不可以或缺的,主要作用是利用AlGaN的高能带阻挡发光层的电子外溢至P层,但是也带来很多不好之处。
技术实现思路
本专利技术提供一种LED外延片的制备方法,该方法可以进一步减少发光面积损失,增加补充层提高量子阱的生长质量,提高反向电压,降低器件内部漏电的同时,还利用In组分渐变的斜阱层,改变阱的禁带宽度,以俘获更多的电子和空穴,增大了电子与空穴的接触面积,提高发光面积,降低电子的运行速度,增大与空穴的接触的有效电子数,提高发光二极管的发光效率。为了实现上述目的,本专利技术提供一种LED外延片的制备方法,该制备方法包括如下步骤:(1)准备衬底H2环境中高温净化衬底;在1000℃~1100℃的H2气氛下,通入100L/min~130L/min的H2,保持反应腔压力100mbar~300mbar,处理衬底8min~10min;(2)采用金属有机化合物化学气相沉积法在衬底上形成外延片所述外延片包括从衬底上由下而上依次生成低温缓冲层、U型氮化镓GaN层、N型GaN层、垒层/阱层/补充层/斜阱层结构的多量子阱层、功能层、发光层和P型GaN层;优选的,在所述步骤(2)中,采用金属有机化合物化学气相沉积法,在550~580℃,保持反应腔压力300mbar~600mbar,通入流量为10000sccm~20000sccm的NH3、50sccm~100sccm的TMGa、100L/min~130L/min的H2、在衬底上生长厚度为20nm~40nm的低温缓冲层GaN。优选的,在步骤(2)中,在低温缓冲层GaN生长U型GaN层:首先生长2D型GaN层,生长温度为1050℃,厚度为0.05um,生长压力100torr;然后快速降温增压生长3D型GaN层,生长温度为990℃,生长厚度为0.05um,生长压力为400torr。优选的,在所述步骤(2)中,N型GaN为掺杂Si的N型GaN层,其生长工艺为:保持反应腔压力、温度不变,通入流量为30000sccm~60000sccm的NH3、200sccm~400sccm的TMGa、100L/min~130L/min的H2、20sccm~50sccm的SiH4,持续生长3μm~4μm掺杂Si的N型GaN,Si掺杂浓度5E18atoms/cm3~1E19atoms/cm3;保持反应腔压力、温度不变,通入流量为30000sccm~60000sccm的NH3、300sccm~400sccm的TMGa、110L/min~130L/min的H2、6sccm~10sccm的SiH4,持续生长300μm~400μm掺杂Si的N型GaN,Si掺杂浓度5E17atoms/cm3~1E18atoms/cm3。优选的,在步骤(2)中,采用金属有机化合物化学气相沉积法生长10~15个周期的垒层/阱层/补充层/斜阱层结构的多量子阱层:a.在N2或N2/H2混合气氛、850~870℃条件下生长GaN垒层;b.在N2或N2/H2混合气氛、650~720℃条件下生长InGaN阱层;c.补充层的生长:阱层生长结束后,中断金属Ga源的通入,继续通入金属In源,中断时间为10~25s,同时以1.0~1.5℃/s的速度从阱层的生长温度开始升温,形成补充层;d.斜阱层的生长:再继续通入金属Ga源,同时以2.5~3℃/s的速度继续升温,形成In组分渐变的斜阱层。优选的,在所述步骤(2)中,所述功能层至少包括3个由下至上依次生长的循环层,所述循环层包括由下至上依次生长的掺硅元素的N型GaN层,掺硅元素、铝元素和铟元素的第一N型铝铟氮化镓AlInGaN层,掺入硅元素、铝元素和铟元素的第二N型AlInGaN层,且所述掺硅元素的N型GaN层、所述第一N型AlInGaN层和所述第二N型AlInGaN层的掺杂浓度不同。优选的,其中所述循环层中每一层的硅元素的掺杂浓度为1e17/cm3~1e19/cm3,掺杂有铝元素的层中铝元素的组分为0.02wt%~0.5wt%,掺杂有铟元素的层中铟元素的组分为0.02wt%~0.05wt%。优选的,上述功能层的生长温度位于750℃~1000℃范围内、压力位于50torr~500torr范围内、转速位于为1000rpm~1500rpm范围内、生长速率位于3μm/h~5μm/h范围内。优选的,在步骤(2)中,所述发光层为交替生长掺杂In的InxGa(1~x)N/GaN发光层,其生长工艺为:保持反应腔压力400mbar~500mbar、温度750℃~800℃,通入流量为60000sccm~80000sccm的NH3、20sccm~40sccm的TMGa、1500sccm~2000sccm的TMIn、100L/min~130L/min的N2,生长掺杂In的2.5nm~3.5nm的InxGa(1~x)N层,x=0.26~0.28,发光波长450nm~455nm;接着升高温度至750℃~850℃,保持反应腔压力300mbar~400mbar,通入流量为50000sccm~70000sccm的NH3、20sccm~100sccm的TMGa、100L/min~130L/min的N2,生长8nm~15nm的GaN层;重复InxGa(1~x)N的生长,然后重复GaN的生长,交替生长InxGa(1~x)N/GaN发光层,控制周期数为10~12个。优选的,在步骤(2)中,采用如下方式生成P型GaN层:保持反应腔压力400mbar~900mbar、温度950℃~100本文档来自技高网
...

【技术保护点】
一种LED外延片的制备方法,该制备方法包括如下步骤:(1)准备衬底H

【技术特征摘要】
1.一种LED外延片的制备方法,该制备方法包括如下步骤:(1)准备衬底H2环境中高温净化衬底;在1000℃~1100℃的H2气氛下,通入100L/min~130L/min的H2,保持反应腔压力100mbar~300mbar,处理衬底8min~10min;(2)采用金属有机化合物化学气相沉积法在衬底上形成外延片所述外延片包括从衬底上由下而上依次生成低温缓冲层、U型氮化镓GaN层、N型GaN层、垒层/阱层/补充层/斜阱层结构的多量子阱层、功能层、发光层和P型GaN层。2.如权利要求1所述的方法,其特征在于,在步骤(2)中,采用金属有机化合物化学气相沉积法生长10~15个周期的垒层/阱层/补充层/斜阱层结构的多量子阱层:a.在N2或N2/H2混合气氛、850~870℃条件下生长GaN垒层;b.在N2或N2/H2混合气氛、650~720℃条件下生长InGaN阱层;c.补充层的生长:阱层生长结束后,中断金属Ga源的通入,继续通入金属In源,中断时间为10~25s,同时以1.0~1.5℃/s的速度从阱层的生长温度开始升温,形成补充层;d.斜阱层的生长:再继续通入金属Ga源,同时以2.5~3℃/s的速度继续升温,形成In组分渐变的斜阱层。3.如权利要求2所述的方法,其特征在于,在所述步骤(2)中,所述功能层至少包括3个由下至上依次生长的循环层,所述循环层包括由下至上依次生长的掺硅元素的N型GaN层,掺硅元素、铝元素和铟元素的第一N型铝铟氮化镓AlInGaN层,掺入硅元素、铝元素和铟元素的第二N型AlInGaN层,且所述掺硅元素的N型GaN层、所述第一N型AlInGaN层和所述第二N型AlInGaN层的掺杂浓度不同。4.如权利要求3所述的方法,其特征在于,其中所述循环层中每一层的硅元素的掺杂浓度为1e17/cm3~1e19/cm3,掺杂有铝元素的层中铝元素的组分为0.02wt%~0.5wt%,掺杂有铟元素的层中铟元素的组分为0.02...

【专利技术属性】
技术研发人员:梁沛明
申请(专利权)人:广东泓睿科技有限公司
类型:发明
国别省市:广东,44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1