基于方向角传感器求测量点间距的风电叶片弯曲测量方法技术

技术编号:14693199 阅读:64 留言:0更新日期:2017-02-23 16:05
本发明专利技术公开了一种基于方向角传感器求测量点间距的风电叶片弯曲测量方法,包括2套测量装置,一套位于风电叶片的一侧,另一套位于风电叶片的另一侧,所述的测量装置包括一个超声波发射装置和两个超声波接收装置,所述的超声波发射装置为双晶探头构成的超声波发射装置,所述的超声波接收装置为单晶探头构成的超声波接收装置,所述超声波发射装置的双晶探头与超声波接收装置的单晶探头前均设有锥形共振盘,锥形共振盘安装的高度为风电电机轴承高度和风电叶片长度两者积的0.5倍,本发明专利技术能够通过超声波测量叶片的弯曲程度,从而为风电的监测和检修提供数据支持,从而减少风电的安全事故。

【技术实现步骤摘要】

本专利技术涉及
,具体为一种基于求相邻测量点间距的风电叶片弯曲测量装置及方法,尤其是一种基于方向角超声传感器接收装置求相邻测量点间距的风电叶片弯曲测量装置及方法。
技术介绍
风电叶片长度可达上百米,在运转工作过程中,因风力作用会发生不同程度的弯曲变形,叶片的弯曲变形会影响叶片的受力状态,从而降低叶片的使用寿命,严重时会产生断裂,因此需要监测风电叶片上不同位置点的变形情况。
技术实现思路
本专利技术的目的在于提供一种基于方向角传感器求测量点间距的风电叶片弯曲测量方法,以解决上述
技术介绍
中提出的问题。为实现上述目的,本专利技术提供如下技术方案:一种基于方向角传感器求测量点间距的风电叶片弯曲测量装置,包括2套测量装置,一套位于风电叶片的一侧,另一套位于风电叶片的另一侧,所述的测量装置包括一个超声波发射装置和两个超声波接收装置,所述的超声波发射装置为双晶探头构成的超声波发射装置,所述的超声波接收装置为单晶探头构成的超声波接收装置。优选的,所述超声波发射装置的双晶探头与超声波接收装置的单晶探头前均设有锥形共振盘,锥形共振盘安装的高度为风电电机轴承高度和风电叶片长度两者积的0.5倍。优选的,所述两个超声波接收装置,其中之一包括方向角超声传感器接收装置、信号放大调理装置、方向角测量及F/V变换装置、相位测量装置和数值计算装置,其中另一包括全向超声传感器接收装置、信号放大调理装置、F/V变换装置、相位测量装置和数值计算装置;所述的方向角超声传感器接收装置既能测量声压的大小也能测量声压的方向,将超声波的声强时间特性转换为电压时间特性以及频率时间特性,通过信号放大调理装置将超声传感器接收装置输出的信号放大调理,滤除干扰,结合吸声材料以及电压时间特性测量出吸声材料位置到各个超声传感器接收装置的相位差。一种基于方向角传感器求测量点间距的风电叶片弯曲测量方法,包括以下步骤:S1:记录测量点的位置,在风电叶片表面涂覆吸声材料,在测量点上不涂吸声材料,并记录测量点在风电叶片上的位置;S2:安装测量装置,风电叶片下方地面上在相对位置处安装两套测量装置,一套位于风电叶片的一侧,另一套位于风电叶片的另一侧,其中每套测量装置包括一个超声波发射装置和两个超声波接收装置,两个超声波接收装置中,一个能测量方向角,一个是普通的超声传感器,超声波发射装置均设置在风电叶片下方的地面上,且超声波接收装置均安装在以风电立柱为圆心,风电叶片长度为半径的圆外侧,所述测量装置中的超声波发射装置在频率的选择上,应该满足以下条件:其中之一的超声波发射装置发射频率为f时,另一超声波发射装置发射频率应该大于,从而保证了两个测量装置互不干扰;S3:根据频率确定超声波信号来自于哪个测量点,其中测量点的线速度为,超声波接收装置到测量点的连线与测量点线速度之间的夹角为,根据多普勒效应,则超声波接收装置接收的各个测量点反射的超声波频率为:式中为超声波在空气中的速度,f为的超声波发射装置的发射频率,当测量点离电机轴承中心点的距离越大时,越大,接收端可以根据频率的不同确定超声波信号来自于哪个测量点;S4:在风电叶片下方,在小尺寸范围内以某点O为中心放置两个声压感知方向垂直的超声传感器接收装置即方向角超声传感器接收装置和全向超声传感器接收装置,在三维坐标方向设OA、OB和OC为坐标轴建立坐标系,则A、B、C接收到的声压对应的电流大小为Pa,Pb和Pc,声音矢量的方向为(Pa,Pb,Pc),则直线方程为,全向声压值为,超声传感器接收装置将超声波的声强时间特性转换为电压时间特性以及频率时间特性,并通过信号放大调理装置将超声传感器接收装置输出的信号放大调理,滤除干扰,即Aj(j=1,2)点声压代表的电信号为,这里θj为初相角,,其中a>>bi=2时设方向角超声传感器接收装置的值为(Pa(t),Pb(t),Pc(t)),则对应的;S5:计算相邻的两个测量点之间的距离,令R0、R1、为超声波接收装置,Ry为超声波发射装置,则各点的坐标为:R0(0,0,0),R1(-1,0,0),Ry(x0,y0,z0),通过信号放大调理装置将超声传感器接收装置输出的信号放大调理,即Aj(j=1,2),经过F/V变换装置将放大调理输出的频率信号变换成电压时间特性即Bi(i=1,2),通过相位测量装置测量Bi的突变位置及相位的整体偏移规律,从而得出相位差Δti,即时差,再根据时差可以计算出测量点到R0、R1的距离差,即为B1、B2到R0、R1的距离差如下:B1突变处B1R0的矢量方向(Pa1,Pb1,Pc1)B2突变处B2R0的矢量方向(Pa2,Pb2,Pc2)得到;同理,在风电叶片的另一侧安装的测量装置,也可以测得相邻的两个测量点之间的距离;S6:计算弯曲半径,通过风电叶片一侧安装的测量装置,可以测得相邻的两个测量点之间的距离为L1,通过风电叶片另一侧安装的测量装置,可以测得前后对应位置的相邻的两个测量点之间的距离为L2,则:,风电叶片的弯曲半径为:,其中H为风电叶片的厚度,根据风电叶片的弯曲半径就可以知道风电叶片的弯曲程度了,即风电叶片的弯曲半径越大,风电叶片的弯曲越小。与现有技术相比,本专利技术的有益效果是:本专利技术利用超声传感器上的探头测量计算风电叶片上测量点的坐标,通过几何计算获得叶片局部弯曲半径,判断叶片变形情况,这种非接触式的测量不会对叶片本身的运行产生影响,通过计算机处理,可以同时测量多点的叶片形变,为风电的监测和检修提供数据支持,从而减少风电安全事故;而且不需要在叶片上安装测试设备,简化设备的维护。附图说明图1为本专利技术超声波接收装置的安装示意图;图2为超声波接收装置的安装位置示意;图3为本专利技术的系统框图;图4为本专利技术的相位测量模型;图5为本专利技术弯曲半径的计算示意图;图6为本专利技术风电叶片上的测量点的分布的示意图。具体实施方式下面将结合本专利技术实施例中的附图,对本专利技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本专利技术一部分实施例,而不是全部的实施例。基于本专利技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本专利技术保护的范围。请参阅图1-6,本专利技术提供一种基于方向角传感器求测量点间距的风电叶片弯曲测量方法的技术方案:一种基于方向角传感器求测量点间距的风电叶片弯曲测量装置,包括2套测量装置,一套位于风电叶片的一侧,另一套位于风电叶片的另一侧,所述的测量装置包括一个超声波发射装置和两个超声波接收装置,所述的超声波发射装置为双晶探头构成的超声波发射装置,所述的超声波接收装置为单晶探头构成的超声波接收装置;所述两个超声波接收装置,其中之一包括方向角超声传感器接收装置、信号放大调理装置、方向角测量及F/V变换装置、相位测量装置和数值计算装置,其中另一包括全向超声传感器接收装置、信号放大调理装置、F/V变换装置、相位测量装置和数值计算装置;所述的方向角超声传感器接收装置既能测量声压的大小也能测量声压的方向,将超声波的声强时间特性转换为电压时间特性以及频率时间特性,通过信号放大调理装置将超声传感器接收装置输出的信号放大调理,滤除干扰,结合吸声材料以及电压时间特性测量出吸声材料位置到各个超声传感器接收装置的相位差。一种基于方向角传感器求测本文档来自技高网...
基于方向角传感器求测量点间距的风电叶片弯曲测量方法

【技术保护点】
一种基于方向角传感器求测量点间距的风电叶片弯曲测量装置,其特征在于:包括2套测量装置,一套位于风电叶片的一侧,另一套位于风电叶片的另一侧,所述的测量装置包括一个超声波发射装置和两个超声波接收装置,所述的超声波发射装置为双晶探头构成的超声波发射装置,所述的超声波接收装置为单晶探头构成的超声波接收装置。

【技术特征摘要】
1.一种基于方向角传感器求测量点间距的风电叶片弯曲测量装置,其特征在于:包括2套测量装置,一套位于风电叶片的一侧,另一套位于风电叶片的另一侧,所述的测量装置包括一个超声波发射装置和两个超声波接收装置,所述的超声波发射装置为双晶探头构成的超声波发射装置,所述的超声波接收装置为单晶探头构成的超声波接收装置。2.根据权利要求1所述的一种基于方向角传感器求测量点间距的风电叶片弯曲测量装置,其特征在于:所述超声波发射装置的双晶探头与超声波接收装置的单晶探头前均设有锥形共振盘,锥形共振盘安装的高度为风电电机轴承高度和风电叶片长度两者积的0.5倍。3.根据权利要求1所述的一种基于方向角传感器求测量点间距的风电叶片弯曲测量装置,其特征在于:所述两个超声波接收装置,其中之一包括方向角超声传感器接收装置、信号放大调理装置、方向角测量及F/V变换装置、相位测量装置和数值计算装置,其中另一包括全向超声传感器接收装置、信号放大调理装置、F/V变换装置、相位测量装置和数值计算装置;所述的方向角超声传感器接收装置既能测量声压的大小也能测量声压的方向,将超声波的声强时间特性转换为电压时间特性以及频率时间特性,通过信号放大调理装置将超声传感器接收装置输出的信号放大调理,滤除干扰,结合吸声材料以及电压时间特性测量出吸声材料位置到各个超声传感器接收装置的相位差。4.一种基于方向角传感器求测量点间距的风电叶片弯曲测量方法,其特征在于,包括以下步骤:S1:记录测量点的位置,在风电叶片表面涂覆吸声材料,在测量点上不涂吸声材料,并记录测量点在风电叶片上的位置;S2:安装测量装置,风电叶片下方地面上在相对位置处安装两套测量装置,一套位于风电叶片的一侧,另一套位于风电叶片的另一侧,其中每套测量装置包括一个超声波发射装置和两个超声波接收装置,两个超声波接收装置中,一个能测量方向角,一个是普通的超声传感器,超声波发射装置均设置在风电叶片下方的地面上,且超声波接收装置均安装在以风电立柱为圆心,风电叶片长度为半径的圆外侧;S3:根据频率确定超声波信号来自于哪个测量点,其中测量点的线速度为,超声波接收装置到测量点的连线与测量点线速度之间的夹角为,根据多普勒效应,则超声波接收装置接收的各个测量点反射的超声波频率为:式中为超声波在空气中的速度,f为超声波发射装置的发射频率,当测量点离电机轴承中心点的距离越大时,越大,接收端可以根据...

【专利技术属性】
技术研发人员:覃翠张健余辉龙赵静
申请(专利权)人:南京工程学院
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1