一种砷化铟基II类超晶格结构及制备方法技术

技术编号:14658091 阅读:240 留言:0更新日期:2017-02-16 23:47
本发明专利技术公开了一种砷化铟基II类超晶格结构及制备方法。其结构自下而上依次为InAs层、GaAs层、GaAsxSb1‑x层和GaAs层。其特点在于:(1)原有的GaSb衬底被InAs衬底替代,使得超晶格生长温度大幅度提高,生长温度的提高有利于表面原子扩散长度的增加,因此更有利于材料的二维生长和材料缺陷密度的降低;(2)As阀在整个II类超晶格生长过程中一直处于打开状态,使得在生长GaSb层时由于部分As的流出而形成了GaAsSb三元化合物;由于各层中都有共同元素As存在,使得各层的生长温度趋于一致,并使得界面处的互扩散减少;(3)InAs层厚度的变化对InAs基II类超晶格的失配影响较小,极大地降低了长波、尤其是甚长波材料的生长难度,更易于提高材料的性能和质量。

【技术实现步骤摘要】

本专利技术涉及一种II类超晶格材料,特别涉及一种基于砷化铟衬底的新型II类超晶格结构及制备方法,它应用于中波、长波、甚长波红外焦平面探测器。
技术介绍
InAs/GaSbII类超晶格材料是第三代红外焦平面探测器的优选材料,近年来,美国、德国、日本等国都在大力发展基于该II类超晶格的红外探测技术。InAs/GaSb异质材料体系具有十分特殊的能带排列结构,InAs禁带宽度小于InAs/GaSb的价带偏移,因此InAs的导带底在GaSb的价带顶之下,构成II类超晶格。这就导致(1)电子和空穴在空间上是分离的,电子限制在InAs层中,而空穴限制在GaSb层中,其有效禁带宽度为电子微带至重空穴微带的能量差;(2)改变超晶格周期厚度,可有效地调节InAs/GaSb超晶格的有效禁带宽度。InAs/GaSbII类超晶格的优势还在于能吸收正入射光,具有高的量子效率、低的俄歇复合和漏电流,易于实现高的工作温度。此外,成熟的III-V族化合物的分子束外延生长技术为高性能II类超晶格的制备提供了技术支持,采用分子束外延技术制备超晶格可使得超晶格中各膜层材料的生长速率和组分高度可控。目前GaSb基InAs/GaSbII类超晶格结构主要包含GaSb层、InAs-on-GaSb界面层、InAs层和GaSb-on-InAs界面层。其中As源和Sb源分别是由As带阀的裂解炉和Sb带阀的裂解炉提供的。但(1)由于InAs与衬底GaSb之间存在着0.6%的晶格失配,故需要晶格常数比GaSb大的InSb界面层进行应变补偿,而InSb材料的生长温度较低,从而严重限制了超晶格的生长温度,进而使得材料的二维生长较为困难,从而降低了材料的质量;(2)由于超晶格红外探测器的截止波长主要取决于InAs层的厚度,而InAs层厚度的变化对GaSb基II类超晶格的晶格失配影响较大;(3)由于InAs和GaSb之间没有共同原子,故其界面处的互扩散现象比较严重;(4)Sb的蒸气压较低、迁移率较小,易于形成团簇,而Sb晶格空位又容易被Ga占据,形成双受主Ga反位(GaSb)缺陷;(5)在超晶格的生长过程中,As阀时开时关会造成As压不稳定,致使超晶格材料组分不均匀,质量下降。
技术实现思路
本专利技术的目的是提供一种基于砷化铟衬底的新型II类超晶格结构,解决目前存在的以下技术问题:1.由于InSb界面补偿层存在导致的超晶格生长温度低的问题;2.InAs层厚度变化严重影响II类超晶格晶格失配的问题;3.InAs层厚度增加需要厚的InSb层进行补偿,而生长厚InSb界面层会引起较多缺陷和位错的问题;4.各膜层界面处互扩散现象严重的技术问题;5.As阀时开时关会造成As压不稳定,致使超晶格材料组分不均匀的问题。如附图1所示,本专利技术的II类超晶格结构为:由InAs衬底自下而上依次为InAs层1、GaAs层2、GaAsxSb1-x层3和GaAs层4。其中:所述的InAs层1的厚度为2.1nm-10.5nm;所述的GaAs层2的厚度为0.0nm-0.15nm;所述的GaAsxSb1-x层3的厚度为2.1nm-3.6nm,组分x为0.01-0.09;所述的GaAs层4的厚度为0.0nm-0.15nm。具体制备方法步骤如下:1)将In炉和Ga炉调至所需生长温度;2)将InAs衬底装入分子束外延真空系统;3)将InAs衬底温度升至InAs/GaSbII类超晶格生长温度;4)将As阀和Sb阀开至II类超晶格生长所用阀位;5)采用分子束外延方法在InAs衬底上依次外延InAs层1、GaAs层2、GaAsxSb1-x层3和GaAs层4。如图2所示,步骤5)中InAs/GaSbII类超晶格的一个生长周期内快门开关顺序为:第一步将In、As的快门打开,第二步只开As快门,第三步只开Ga快门,第四步将Ga、Sb快门打开,第五步只开Ga快门,第六步只开As快门。之后循环往复,直至材料生长结束。在整个超晶格生长过程中,As阀位不变,只有As快门的开关,故第一步形成了InAs层,第二步和第三步形成了第一个GaAs层,第四步形成了GaAsxSb1-x层,第五步和第六步形成了第二个GaAs层。本专利技术的优点在于:(1)InAs衬底替代GaSb衬底使得超晶格的生长温度大幅度提高,生长温度的提高有利于表面原子扩散长度的提高,因此更有利于材料的二维生长和材料缺陷密度的降低;(2)InAs层厚度的变化对InAs基II类超晶格的失配没有影响,这一点极大地降低了长波、尤其是甚长波材料的生长难度;(3)超晶格中各层之间由于有共同的元素As可使界面处互扩散现象减少;(4)As原子表面活性剂作用,增加了Sb原子的迁移率,降低了Sb团簇的形成几率,减少了材料本身的缺陷,提高了材料性能;(5)制备方法不仅避免了外延生长时As阀频繁开关,节省了开关As阀及使As压稳定的时间,还极大地简化了外延生长过程,并节约了材料生长时间。附图说明:图1是InAs基InAs/GaSbII类超晶格四层结构模型;(1)为InAs层,(2)为第一个GaAs层,(3)为GaAsxSb1-x层,(4)为第二个GaAs层。图2是InAs基InAs/GaSbII类超晶格材料一个生长周期内快门开关示意图。具体实施方式实施例1根据
技术实现思路
,我们制备了一种II类超晶格材料,其具体结构为:InAs层1的厚度为2.1nm;GaAs层2的厚度为0.0nm;GaAsxSb1-x层3的厚度为2.1nm,比分x为0.09;GaAs层4的厚度为0.0nm。实施例2根据
技术实现思路
,我们制备了第二种II类超晶格材料,其具体结构为:InAs层1的厚度为6.6nm;GaAs层2的厚度为0.1nm;GaAsxSb1-x层3的厚度为2.7nm,比分x为0.02;GaAs层4的厚度为0.1nm。实施例3根据
技术实现思路
,我们制备了第三种II类超晶格材料,其具体结构为:InAs层1的厚度为10.5nm;GaAs层2的厚度为0.15nm;GaAsxSb1-x层3的厚度为3.6nm,比分x为0.01;GaAs层4的厚度为0.15nm。本文档来自技高网
...
一种<a href="http://www.xjishu.com/zhuanli/59/201610893905.html" title="一种砷化铟基II类超晶格结构及制备方法原文来自X技术">砷化铟基II类超晶格结构及制备方法</a>

【技术保护点】
一种砷化铟基II类超晶格结构,其结构自下而上依次为InAs层(1)、GaAs层(2)、GaAsxSb1‑x层(3)和GaAs层(4),其特征在于:所述的InAs层(1)的厚度为2.1nm‑10.5nm;所述的GaAs层(2)的厚度为0.0nm‑0.15nm;所述的GaAsxSb1‑x层(3)的厚度为2.1nm‑3.6nm,组分x为0.01‑0.09;所述的GaAs层(4)的厚度为0.0nm‑0.15nm。

【技术特征摘要】
2016.04.19 CN 20161024240931.一种砷化铟基II类超晶格结构,其结构自下而上依次为InAs层(1)、GaAs层(2)、GaAsxSb1-x层(3)和GaAs层(4),其特征在于:所述的InAs层(1)的厚度为2.1nm-10.5nm;所述的GaAs层(2)的厚度为0.0nm-0.15nm;所述的GaAsxSb1-x层(3)的厚度为2.1nm-3.6nm,组分x为0.01-0.09;所述的...

【专利技术属性】
技术研发人员:王芳芳陈建新徐志成余成章
申请(专利权)人:中国科学院上海技术物理研究所
类型:发明
国别省市:上海;31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1