一种用于薄膜太阳能电池的光子晶体陷光结构制造技术

技术编号:14447219 阅读:97 留言:0更新日期:2017-01-15 20:50
本实用新型专利技术一种用于薄膜太阳能电池的光子晶体陷光结构,其特征是:主要由二维光子晶体陷光层以及一维光子晶体反射结构组成;其中:所述二维光子晶体陷光层由分别设置在薄膜太阳能电池吸收层上、下方的二维光子晶体组成,两层二维光子晶体的结构参数相同。本实用新型专利技术的双层二维光子晶体陷光结构充分利用了二维光子晶体大倾角散射入射光的光学特性,上下两层二维光子晶体将入射光以大倾角反射到电池吸收层内部,大大的延长了光子的传输路径,同时,大倾角反射光会在电池吸收层分界面上发生全反射再次反射回吸收层,达到捕获光的效果,提高了薄膜太阳能电池对入射光的吸收效率,提高了太阳能电池的性能。

【技术实现步骤摘要】

本专利技术属于太阳能电池
,特别是薄膜太阳能电池光捕获结构的设计,本专利技术提出一种双层二维光子晶体陷光结构,提高薄膜太阳能电池的光捕获效率,进而提高电池的光电转换效率。
技术介绍
太阳能作为一种解决能源危机以及环境问题的重要途径被各国广泛关注。太阳能电池光电转化效率太低以及生产成本过高的问题一直制约着太阳电池的发展。针对上述两个问题,太阳能电池一代一代的迅速发展,电池转化效率不断提高,生产成本不断降低。薄膜太阳能电池的出现大大降低了太阳能电池的制造成本,但是其转化效率却低于传统太阳能电池。这是由于薄膜太阳能电池在大幅度减小电池厚度的同时,过薄的吸收层严重限制了电池对长波长太阳光的吸收。目前提高薄膜太阳能电池光电转换效率的主要方法是在薄膜太阳能电池背部增加反射结构,将透过电池吸收层的入射光再反射回吸收层,增加入射光在电池吸收层的传输路径。薄膜太阳能电池普遍在电池背部增加Ag/ZnO反射层和Al/ZnO反射层作为电池的反射结构,这两种金属太阳能电池反射结构可在较宽频域内对入射光具有较高的反射率,同时金属反射结构还具有优越的电学特性。但是金属反射结构的表面对光有较大的吸收损耗,入射太阳光在金属表面平均每发生一次反射就会损失3%~8%的能量,同时,金属具有趋肤效应以及金属元素易于扩散的特定严重影响电池的性能与稳定性。以上存在的问题不利于电池的转换效率和稳定性的提高以及电池生产成本的降低。金属反射结构无法克服以上问题,而基于波动光学的光子晶体反射结构以其优越的反射以及陷光特性被越来越多的应用到提高太阳能电池光电转换效率上来。光子晶体是由两种或两种以上不同介电常数的介质材料在空间成周期排布而成的微型结构,按不同介电常数材料的空间周期性排列方式不同可分为一维光子晶体、二维光子晶体以及三维光子晶体。一维光子晶体可在特定波长范围获得接近100%的反射率,将一维光子晶体反射结构应用到薄膜太阳能电池中,可以在获得较高反射率的同时有效的避免金属反射层给太阳能电池带来的所有负面影响。但由于太阳能电池的吸收光谱范围较宽,一般为300~1100nm,电池对长波长入射光的吸收长度较大,如非晶硅吸收层对波长为1100nm入射光的吸收长度为3mm,显然如果只通过在太阳能电池背部的反射结构来增加有限次数的反射对长波长入射光的吸收效率的提高不是很明显。为了解决以上问题,本专利技术提出一种双层二维光子晶体薄膜太阳能电池陷光结构,将双层二维光子晶体陷光结构与一维光子晶体反射结构结合起来,形成一种多层混合陷光结构,通过多层结构在增加电池背部反射效率的同时减少底层反射光在顶层顶层的透射,真正达到陷光。这种理念对于提高薄膜太阳能电池光捕获效率具有重要的意义。
技术实现思路
本专利技术的目的是针对上述存在的问题,提供一种双层二维光子晶体组成的高效太阳能电池陷光结构,该陷光结构充分利用二维光子晶体大倾角反射入射光的特点结合一维光子晶体高性能反射结构组成了一种多层高效光子晶体光捕获结构。本专利技术弥补了薄膜太阳能电池反射结构的不足,充分延长了入射光在电池吸收层的传播路径,同时还减少了电池上层对反射光的透射,增加了电池的光捕获效率。实现本专利技术目的技术方案是:一种用于薄膜太阳能电池的光子晶体陷光结构,其主要由二维光子晶体陷光层以及一维光子晶体反射结构组成;其中:所述二维光子晶体陷光层由分别设置在薄膜太阳能电池吸收层上、下方的二维光子晶体组成,两层二维光子晶体的结构参数相同;所述二维光子晶体由圆柱体介质按照正方晶格排列方式排布在与其折射率不同的等厚透明导电介质中组成;所述组成二维光子晶体的圆柱体介质与薄膜太阳能电池吸收层介质相同,透明导电介质为氧化铟锡(ITO);所述二维光子晶体的结构参数与薄膜太阳能电池吸收材料的种类有关,可通过改变二维光子晶体厚度、填充因子和晶格常数等参数调整双层二维光子晶体的陷光性能;所述二维光子晶体陷光结构可以应用到单晶硅、多晶硅以及非晶硅薄膜太阳能电池中。其中:以非晶硅薄膜太阳能电池为例,二维光子晶体的厚度为110nm,填充因子为0.45,晶格常数为500nm,上层和下层二维光子晶体圆柱体材料分别为n型和p型非晶硅材料;所述一维光子晶体反射结构由两种折射率不同且比值较大的介质材料呈周期交替堆积而成,两种介质的周期厚度由光子晶体中心波长决定,通过改变中心波长以及周期数可以调节光子禁带范围,可以获得较宽的光子禁带;所述组成一维光子晶体的周期介质分别为折射相差较大的二氧化硅和氢化非晶硅;所述一维光子晶体周期厚度与材料折射率有关,其中:二氧化硅的厚度为130nm,氢化非晶硅的厚度为50nm,周期数为5。通过改变双层二维光子晶体陷光结构和一维光子晶体反射结构的参数可以改变整体的陷光特性,可以应用到不同吸收材料的薄膜太阳能电池上。本专利技术的有效效益是:1通过调整二维光子晶体层的填充因子、晶格常数以及厚度使二维光子晶体层获得最高的衍射效率,从而使双层二维光子晶体陷光结构获得最佳的光捕获效果。该陷光结构的陷光特性与反射结构增加的有限次的反射相比,大幅度提高了入射光在电池吸收层的传播路径,同时减少了上层反射光的透射,提高了整体的光捕获效率。2通过调整一维光子晶体中心波长、介质折射率比值、周期数与周期厚度使一维光子晶体特定波长范围的反射率接近100%,波长范围可以根据不同薄膜太阳能电池的需要来调整,反射效果优于反射层的95%。3本专利技术充分利用了二维光子晶体大倾角反射入射光的特点,采用上下两层二维光子晶体形成了高效的陷光结构。将该陷光结构与一维光子晶体高效的反射特性相结合,即将具有不同陷光特点的多层光子晶体结构结合起来形成一种多层混合陷光结构,通过双层二维光子晶体结构在增加电池陷光效率的同时减少底层反射光在顶层的透射,真正达到陷光。这种理念对于提高薄膜太阳能电池光捕获效率具有重要的意义。附图说明为了使本专利技术的内容与优点表述的更加清晰,下面将附图进行详细说明。图1为本专利技术实施例的结构示意图;图2为二维光子晶体层结构示意图;图3为一维光子晶体反射结构和Ag反射层在空气中的反射率对比图。图4为具有双层二维光子晶体和一维光子晶体陷光结构与具有Ag反射层的非晶硅薄膜太阳能电池对垂直入射光的吸收效率对比图。图5为具有双层二维光子晶体和一维光子晶体陷光结构与具有Ag反射层的非晶硅薄膜太阳能电池在AM1.5地表太阳光谱垂直入射时的光电流密度对比图。图中:1.一维光子晶体2.下层二维光子晶体3.非晶硅薄膜太阳能电池吸收层4.上层二维光子晶体5.上电极或增透膜6.下电极7.低折射率介质层8.高折射率介质层9.透明导电层10.二维光子晶体圆柱体。具体实施方式下面结合附图与实施例,进一步阐述本专利技术。但应理解,下述实施例仅用于说明本专利技术,而不是限定本专利技术的范围,一切从本专利技术的构思出发,不经过创造性劳动所作出的结构变换均落在本专利技术的保护范围内。实施例:一种适用于非晶硅薄膜太阳能电池的光子晶体陷光结构,如图1所示,该非晶硅薄膜太阳能电池是由一维光子晶体1、下层二维光子晶体2、氢化非晶硅吸收层3、上层二维光子晶体4、增透膜以及上电极5和下电极6组成。下层二维光子晶体2和上层二维光子晶体4分别处在薄膜太阳能电池吸收层的上方和下方。其中:二维光子晶体陷光结构如图2所示,分别由两种不同介质的透本文档来自技高网
...
一种用于薄膜太阳能电池的光子晶体陷光结构

【技术保护点】
一种用于薄膜太阳能电池的光子晶体陷光结构,其特征是:由二维光子晶体陷光层以及一维光子晶体反射结构组成;其中:所述二维光子晶体陷光层由分别设置在薄膜太阳能电池吸收层上、下方的二维光子晶体组成,两层二维光子晶体的结构参数相同;所述二维光子晶体由圆柱体介质按照正方晶格排列方式排布在与其折射率不同的等厚透明导电介质中组成;所述一维光子晶体反射结构由两种折射率不同的介质材料呈周期交替堆积而成。

【技术特征摘要】
1.一种用于薄膜太阳能电池的光子晶体陷光结构,其特征是:由二维光子晶体陷光层以及一维光子晶体反射结构组成;其中:所述二维光子晶体陷光层由分别设置在薄膜太阳能电池吸收层上、下方的二维光子晶体组成,两层二维光子晶体的结构参数相同;所述二维光子晶体由圆柱体介质按照正方晶格排列方式排布在与其折射率不同的等厚透明导电介质中组成;所述一维光子晶体反射结构由两种折射率不同的介质材料呈周期交替堆积而成。2.根据权利要求1所述的用于薄膜太阳能电池的光子晶体陷光结构,其特征是:所述组成二维光子晶体的圆柱体介质与薄膜太阳能电池吸...

【专利技术属性】
技术研发人员:武振华李思敏张文涛熊显名高凤艳
申请(专利权)人:桂林电子科技大学
类型:新型
国别省市:广西;45

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1