固体离子传导性聚合物材料及其应用制造技术

技术编号:14053234 阅读:50 留言:0更新日期:2016-11-26 02:03
本发明专利技术的特征是可再充电的碱性电池,其包含阳极;阴极;以及电解质;其中阳极、阴极与电解质至少之一包括在室温和宽温度范围内具有非常高的离子扩散率和导电性的固体离子传导性聚合物材料;及其制备方法。

【技术实现步骤摘要】
【国外来华专利技术】专利技术背景电池在现代社会中已经变得越来越重要,给众多便携式电子装置供电,以及作为新的绿色技术中的关键部件。由于这些新技术,可以不再依赖于有助于产生副产物温室气体的当前能源,例如煤炭、石油产品和天然气。此外,在固定和移动应用中能够储存能量对于新能源的成功是至关重要的,并且很可能会大幅增加对所有尺寸的先进电池的需求。特别是对于电池的大型应用,较低的电池基本成本对于这些应用的引进和全面成功是关键的。然而,常规电池具有局限性。例如,锂离子与其他电池通常使用液体电解质,其对人体与环境有害,并且可能发生火灾或爆炸。液体电解质电池被气密密封在钢或其他牢固的包装材料内,这增加了包装电池的重量和体积。常规液体电解质在电极/电解质界面遭受固体界面层的积聚,其导致电池的最终失效。由于电池内的化学反应达到完成,并且由于腐蚀和枝晶形成限制再充电能力,常规锂离子电池还表现出缓慢的充电时间以及有限的再充电次数。液体电解质还限制了最大能量密度,其在约4.2伏时开始损坏,而新工业应用常常需要4.8伏以及更高的电压。常规锂离子电池要求允许离子流而阻隔电子流的液体电解质隔膜、减轻在壳体内压力的通风口以及此外的最小化潜在危险的过电流与过温度的安全电路。至于依赖于OH-离子输送而导电的碱性电池,电解质在某一点变得离子(例如,Zn/MnO2电池放电期间的锌酸根离子)饱和,并且最终阳极耗尽水。在可再充电碱性电池中,反应在充电期间是相反的。然而,使电解质饱和的同种离子的形成可能会阻碍放电。阴极反应导致OH-离子的释放。然而,可溶性低价物质的形成(例如,Zn/MnO2电池放电过程中的Mn物质)可以对活性材料的利用产生不利影响。尽管MnO2理论上可以经历616mAh/g的理论容量的双电子还原(2-electron reduction),但在实践中,接近理论双电子放电的比容量尚未得到证实。形成不活跃相且可溶性产物向外扩散的晶体结构重排限制阴极电容。美国专利7,972,726描述了五价铋金属氧化物在提升碱性电池的整体放电性能中的用途。与100%MnO2的287mAh/g以及100%的AgBiO3的200mAh/g相比,含有10%AgBiO3和90%的电解MnO2的阴极被证明在10mA/g的放电速率下提供351mAh/g至0.8V截止。351mAh/g的比容量对应于MnO2的1.13电子放电,并且代表在实际有用的放电率和电压范围内提供的最高比容量。在US 5,156,934和US 5,660,953中公开的铋改性或铅改性的MnO2材料被宣称为能够在很多周期中提供约80%的理论双电子放电容量。在文献[Y.F.Yao,N.Gupta,H.S.Wroblowa,J.Electroanal.Chem.,223(1987),107;H.S.Wroblowa,N.Gupta,J.Electroanal.Chem.,238(1987)93;D.Y.Qu,L.Bai,C.G.Castledine,B.E.Conway,J.Electroanal.Chem.,365(1994),247]中理论论述铋或铅的阳离子能够在放电过程中稳定MnO2的晶体结构和/或允许通过涉及可溶性Mn2+物质的异质机制来进行双电子还原。含有所述Mn2+物质似乎是获得MnO2高利用率以及可逆性的关键。根据US 5,156,934与US 5,660,953,在高碳含量(30-70%)的阴极内,所得高度多孔结构能够吸收可溶性物质。然而,没有数据表明,利用这些阴极的完整的电池被制得,或者这可以通过使用Zn阳极而起效。因此,可以防止(1)离子的溶解,否则所述离子将会使电解质饱和,以及(2)低价物质的溶解和输送,的聚合物电解质将改善碱性电池的利用率和可再充电性。此外,[M.Minakshi,P.Singh,J.Solid State Electrochem,16(2012),1487]已经提出,Li插入在还原时可以稳定MnO2结构,并且允许再充电能力。设计以传导Li+和OH-离子的聚合物带来调整MnO2放电机制以有利于质子或锂插入的可能性,其可以作为改善寿命周期的额外工具。此外,虽然许多先进应用的电池技术是锂离子(Li离子),但更高能量密度的增加的需求,无论是在便携式装置的体积(Wh/L)方面,还是电动车和其他大型应用的重量(Wh/kg)方面,已经显示获取远远超出Li离子电池的现有容量的技术的必要性。一种这类有前途的技术是锂/硫电池。由于较高的理论能量密度(1,672mAh/g),其比当前锂离子金属氧化物阴极活性材料约高10倍,硫基阴极是有吸引力的。此外,硫令人激动还因为它是非常丰富的、低成本的环保材料,不像许多目前的锂离子电池材料那样,例如LiCoO2。最近,已经进行了锂/硫电池的大量研究活动,在可再充电的锂/硫电池的容量和循环寿命方面取得了进步。所述活动包括对阴极、阳极、电解质和隔膜的改变,全部以降低多多硫化物穿梭从而改善电池性能为目的。本研究在硫阴极的应用集中在两个主要领域:(1)利用工程材料来包围和包含硫以及可溶性锂化产物,例如参考美国专利申请2013/0065128,以及(2)使用导电性聚合物,其与硫反应以产生“硫化”复合阴极材料。“硫化的聚合物”的实例包括硫与聚丙烯腈(PAN)暴露于高温的反应产物[参见:Jeddi,K.,et.al.J.Power Sources 2014,245,656-662以及Li,L.,et.al.J.Power Sources 2014,252,107-112]。在硫阴极内使用的其他导电聚合物体系包括聚乙烯吡咯烷酮(PVP)[参见:Zheng,G.,et.al.Nano Lett.2013,13,1265-1270]和聚吡咯(PPY)[参见:Ma,G.,et.al.J.Power Sources 2014,254,353-359]。虽然这些方法在限制多硫化物穿梭机制方面都获得了不同程度的成功,但它们都依赖于使用昂贵的材料,不适合于大规模生产。
技术实现思路
本专利技术提供了固体离子传导性聚合物材料,其在室温下以及宽温度范围内具有非常高的离子扩散率和导电性。该固体离子聚合物材料可以被用作碱性电池的固体电解质,并且可以被用作制备碱性电池的电极的组分。该材料不限于电池应用,还可以广泛地适用于其他目的,例如碱性燃料电池、超级电容器、电致变色装置、传感器等。聚合物材料是不易燃的并且自行熄灭,这对否则可能是易燃的应用特别有吸引力。此外,该材料机械强度高,并且可以使用其本身是本领域已知的高容量的聚合物加工技术和设备来制备。在本专利技术的一个方面,固体离子传导性聚合物材料充当电解质在碱性电池内传递OH-离子。碱性电池可以包括多种电池化学,包括但不限于:Zn/MnO2、Zn/Ni、FE/NI、Zn/空气、Ni/金属氢化物、氧化银、金属/空气以及本领域公知的其他。锌/锰氧化物(Zn/MnNO2)化学被最广泛地用于消费类碱性电池。包括固体离子传导性聚合物材料的锂离子电池的固体离子聚合物电解质在2013年4月11日提交的同时待审的美国专利申请13/861,170中公开,并且与本专利技术被转让给同一受让人。在本专利技术的另一个方面,固体离子传导性聚合物材料被本文档来自技高网
...
<a href="http://www.xjishu.com/zhuanli/59/201480073351.html" title="固体离子传导性聚合物材料及其应用原文来自X技术">固体离子传导性聚合物材料及其应用</a>

【技术保护点】
电池,其包括:阳极;阴极;并且其中阳极与阴极至少之一包含固体离子传导性聚合物材料。

【技术特征摘要】
【国外来华专利技术】2013.12.03 US 61/911,0491.电池,其包括:阳极;阴极;并且其中阳极与阴极至少之一包含固体离子传导性聚合物材料。2.权利要求1的方法,其中所述电池是可再充电的。3.权利要求1的方法,其中所述电池是原电池。4.权利要求1的电池,其还包含电解质,其中所述电解质包含固体离子传导性聚合物材料。5.权利要求1的电池,其还包含电解质,其中所述电解质是碱性的。6.权利要求1的电池,其中所述固体离子传导性聚合物可以传导多个OH-离子,并且在20℃-26℃范围内的温度下具有大于10-11cm2/sec的OH-扩散率。7.权利要求1的电池,其中所述固体离子传导性聚合物材料由反应物产物形成,所述反应物产物包含基础聚合物、电子受体以及包括离子源的化合物。8.权利要求1的电池,其中所述阴极包含固体离子传导性聚合物材料。9.权利要求1的电池,其中所述阳极包含固体离子传导性聚合物材料。10.权利要求1的电池,其中阴极包含选自以下的活性材料:高铁酸盐、氧化铁、氧化亚铜、碘酸盐、氧化铜、氧化汞、氧化高钴、氧化锰、二氧化铅、氧化银、氧、羟基氧化镍、二氧化镍、过氧化银、高锰酸盐、溴酸盐、银钒、一氟化碳、二硫化铁、碘、氧化钒、硫化铜、硫或碳以及它们的组合。11.权利要求1的电池,其中所述阳极包含选自锂、镁、铝、锌、铬、铁、镍、锡、铅、氢、铜、银、钯、汞、铂或金,以及它们的组合的活性材料。12.权利要求11的电池,其中所述活性材料被合金化。13.权利要求1的电池,其中所述阴极包含选自二氧化锰、氧以及它们的组合的活性材料。14.权利要求1的电池,其中所述阳极包含锌。15.权利要求1的电池,其中所述阴极包括二氧化锰,并且其中所述阳极包含锌。16.权利要求13的电池,其中二氧化锰的形式选自:β-MnO2(软锰矿)、斜方锰矿、γ-MnO2、ε-MnO2,λ-MnO2、电解二氧化锰(EMD)和化学二氧化锰(CMD),以及前述形式的组合。17.权利要求1的电池,其中至少阳极和阴极之一包含活性材料颗粒,并且其中所述固体离子传导性聚合物材料封装至少一种活性材料颗粒。18.权利要求1的电池,其中至少阳极和阴极之一包含导电添加剂。19.权利要求1的电池,其中至少阳极和阴极之一包含功能性添加剂。20.权利要求18的电池,其中所述导电添加剂选自碳黑、天然石墨、合成石墨、石墨烯、导电聚合物、金属颗粒以及前述组分中的至少两种的组合。21.权利要求19的电池,其中所述功能性添加剂选自铋、ZnO、Mg...

【专利技术属性】
技术研发人员:M·A·齐莫尔曼A·B·加夫里洛夫
申请(专利权)人:离子材料公司
类型:发明
国别省市:美国;US

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1